函数T(n)=6n4+3n2+1,用Θ记号可以表示为?
A: Θ(n4)
B: Θ(n2)
C: Θ(n3)
D: Θ(n)
A: Θ(n4)
B: Θ(n2)
C: Θ(n3)
D: Θ(n)
举一反三
- 下列说法:(1)\(N(AA^T)=N(A)\);(2)\(N(A^TA)=N(A)\);(3)\(C(A^TA)=C(A^T)\);(4)\(C(A^T)=N(A)\). 其中正确的是____. A: (1)(3) B: (2)(3) C: (1)(4) D: (2)(4)
- 用δ(n)及其延迟项表示序列x(n)={2, -3 , 4,1},结果为( ) A: x(n)=2δ(n)-3δ(n-1)+4δ(n-2)+δ(n-3 B: x(n)=2δ(n-1)-3δ(n)+4δ(n+1)+δ(n+2) C: x(n)=2δ(n+1)-3δ(n)+4δ(n-1)+δ(n-2) D: x(n)=2δ(n)-3δ(n+1)+4δ(n+2)+δ(n+3)
- 函数T(n)=2n2+10nlogn+2n+1,用Ω记号可以表示为? A: Ω(n2) B: Ω(n) C: Ω(nlogn) D: Ω(1)
- 设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]
- 在由N个构件组成的机构中,有_____个相对瞬心,有____个绝对瞬心。 A: N(N−1)/4,N(N−1)/4 B: (N−1)(N−2)/2,N−1; C: N,N(N−3)/2 D: N(N−3)/2,N