• 2022-06-29
     求下列函数 [tex=1.643x1.357]Wfem9oxh0ZS7nZ3KGomKoQ==[/tex] 的像函数 [tex=1.929x1.357]CsHYmgN8a4Yt6bxTnBWLzw==[/tex].[p=align:center][tex=7.143x1.429]74el1besOXaNNqEzJQyjr1w00YnWqBe6Ohoph5qoEJg=[/tex]
  • 解 本题的解题要点就是熟练运用拉普拉斯变换的定义式及其性质。[tex=7.143x1.429]q8JTGOFscN65Kanu8MSCoVVsoxhOlc1taIALWwnuO6Q=[/tex][tex=20.571x5.714]GbARQ23d4wruFEQaOj0OX8t5rtxDCQa4RjfV02IAfYV9t60qSBz1xFp491RweteTloXsc6zAIvy4kO4VWVEHSPsefHkzyrXM/9jrDcEuqhVE9CemplNxQ4AyuESbHIIDClms9jIU9ZgTAhREsBCuhhUDJFzMtQjANVLRCSWKtefQTCysQHa1Z2oT17ZXzA18SCeFhuRVqerNeJkFgxNmCneW0Q8pkW8AiyXBiJrZ/YE8AU+0JKcxx+jvJbukty9cTY+fCAiOrk/UYhiHUX7v9BZd0yi00V+rYJ78rfflPNhd2K4z6Lrq5eOMAA1w30tp7YsxQor+/dBci2wOqrw47fxu0zCLPqrXP8IVIw2z0Be3Eub5jDlQuNKdnDd2/mVIjkRE43qZ+KWPyzXLTplHG+HyEGgtEnmn2PtHl+v9y5d00FYb0HJ679iegpWPirK9[/tex][tex=22.643x8.571]BfYII7psoxvGiTEWoyqKtTsrVTMjhfnmDGs59J5Bz8RYSI4qk1zNK9vqZiuAYH5c8MvSryCEyClsPdkLAWiCghQIXUDTZO+zh7UPEw3hS7FsOApt5pzWS6MZX/I1Bz6QzZC4wusbsYa44lIqTQ/Q5ov/GamNMrgNLvDJj946YpMq7VbeAZhU3B2dEw5Dr+9Ozs7O2igKiKvPMp6JVuI7otTzs1eUt6zzKipUEik5Hrrf03nPzJRz5SOHkdCWk9q5KUe2PFStgjNTU3Eb2Nv/B8Q3cuu08tc68DxKf1O9/k84sAbHmYs4/5L9N4BjIQbup+MBqRkv1A4FBonRdI6eT+IugdEeTk0PU3xsM/S7b/EHwulNyeIrEudRxc5C0hOYNwyIwLEYyspsNt/6v1UE5/KEJyDUzVFNrYgZ7MjZHva7O27KROEmukrSBYGZ3ZUzy+VjmdqxZY7Kikdz17gX2f8/FZhlGxQIr0GkCJWkJTYbjHTDGIwoxKiDfoBkbRGIlGnKGQ84oFn4iOZwlmkFLYBx2sdsyIoPjX0ZBolLFkrtsEegPk0t3I/UB/CgcHQW[/tex]本小题主要是应用分步积分公式。根据公式 [tex=8.357x2.643]4dDFfiDQ/CydfMiWExU25peQwIZnJiW3DhNerjNp55nLMlcQPsz1vACQe740tXPv[/tex], 令 [tex=4.929x1.357]Ed/RkwqCcQCmJcACk14+bKHXKZ7jD3gNuCjPYFZS/jA=[/tex], 可得[p=align:center][tex=19.571x2.857]2QbSOeEH98XtXqFAkxNr3mKvs5BRpERXVzh7/PVa5/LBl1JVL3vQz2fDyyivD82TUBQBzYn9paJnDceHh2vRqb/eBS1TijUd2eB29+TvT8W+J8UHuU8Kv38ffrKpwsuX6qyFF2zodmGSlXScFNJPvvSGOIjub5zsLX3VDNozgAiGT8UkbvwfbkmIaB0QFCHlwEMRI7LKOigu6Yl37arUSp441NurBQeIiV1IIyO0UGoRgWrcMpwVq41vBqBBfJ8Z[/tex]

    内容

    • 0

      求下列时间函数[tex=1.643x1.357]Wfem9oxh0ZS7nZ3KGomKoQ==[/tex] 的拉氏变换[tex=1.929x1.357]CsHYmgN8a4Yt6bxTnBWLzw==[/tex]. [tex=8.286x1.357]oZ7RD1EoQar2RSh941WS/CpvheH19gjahi2H0/VXciQ=[/tex]

    • 1

      求下列像函数[tex=1.929x1.357]CsHYmgN8a4Yt6bxTnBWLzw==[/tex] 的拉氏逆变换.[tex=3.286x2.429]vHiVCTPwtbhGee6khJwntYpSjs/JysBtrGTjZjYP5HY=[/tex];

    • 2

      如果已知因果函数 [tex=1.643x1.357]Wfem9oxh0ZS7nZ3KGomKoQ==[/tex]的象函数[tex=6.929x2.429]sMR63Gd/hhMniuOXbiZJxvMt8CJ2qX74SbFbHjhZRE8=[/tex] 求下列函数的象函数。[tex=4.143x1.5]eYKBKVEvHiqF0C2bEOpos9WXKqr2uPg9sVKcNFd+fg8=[/tex]

    • 3

      如果已知因果函数 [tex=1.643x1.357]Wfem9oxh0ZS7nZ3KGomKoQ==[/tex]的象函数[tex=6.929x2.429]sMR63Gd/hhMniuOXbiZJxvMt8CJ2qX74SbFbHjhZRE8=[/tex] 求下列函数的象函数。[tex=5.071x1.5]3diBFlE9Wiv+Rspi6BfH5UXBtxrWUqkqvbewQ7p8dY4=[/tex]

    • 4

      求下列函数的导函数:(1) [tex=5.0x2.357]X/CieCDGJ7iPQ3YFWuscHxHrcIE/dPFa9tFyiJXze8A=[/tex](2)[tex=6.643x1.714]Oj74y/L+OxY81QME5JWMcl+7PZ2FGQswwvjgVhjq1Dmb6dBU0oAjZBW7eFBVjqo6[/tex]