设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是奇函数,[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]是偶函数,考察函数的奇偶性:[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]。
举一反三
- 设函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 有相同的定义域,证明:1)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 都是偶函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是偶函数;2)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 都是奇函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是偶函数;3)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] , 一个是偶函数另一个是奇函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是奇函数。
- 设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是奇函数,[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]是偶函数,考察函数的奇偶性:[tex=2.929x1.286]sv6gj8mHdRGoH45zMXTYwA==[/tex]。
- 设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是奇函数,[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]是偶函数,考察函数的奇偶性:[tex=3.0x1.286]Ma6PLFHuSWuyYs1T23BTrA==[/tex]。
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在其定义域上可导,若[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是偶函数,证明[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]是奇函数;若[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是奇函数,证明[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]是偶函数(即求导改变奇偶性)。
- 函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex]是否为相同的函数:[tex=5.071x1.286]iYaqA/RQw6iRNiNkzOPhkNAKBfw7RgAvmaerJpUmN4s=[/tex]与[tex=3.714x1.286]CD9dAhhHod6udbTywa+b4w==[/tex]。