DBSCAN是相对抗噪声的,并且能够处理任意形状和大小的簇
举一反三
- 从点作为个体簇开始,每一步合并两个最接近的簇,这是一种分裂的层次聚类方法。____40. DBSCAN是相对抗噪声的,并且能够处理任意形状和大小的簇。____
- 关于K均值和DBSCAN的比较,以下说法不正确的是( )。 A: DBSCAN使用基于密度的概念 B: K均值使用簇的基于层次的概念 C: K均值很难处理非球形的簇和不同大小的簇 D: DBSCAN可以处理不同大小和不同形状的簇。
- 关于K均值和DBSCAN的比较,以下说法不正确的是( ) A: K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象。 B: K均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。 C: K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇。 D: K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇。
- 关于K均值和DBSCAN的比较,以下说法正确的是()。 A: K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象。 B: K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念。 C: K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇。 D: K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇。
- DBSCAN算法的优点有( ) A: 不需要事先知道要形成的簇类的数量; B: 当簇的密度变化过大时,对数据集中的簇敏感; C: 能够处理任意形状和大小的簇; D: 处理高维数据时开销低