函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数对应的方程有()个实根, 并指出它们所在的区间.
A: f′(x)=0有三个实根,且x1∈(1, 2),x2∈(2, 3),x3∈(3, 4).
B: f′(x)=0有两个实根,且x1∈(1, 2),x2∈(2, 3).
C: f′(x)=0有一个实根,且x1∈(1, 2).
D: f′(x)=0没有实根.
A: f′(x)=0有三个实根,且x1∈(1, 2),x2∈(2, 3),x3∈(3, 4).
B: f′(x)=0有两个实根,且x1∈(1, 2),x2∈(2, 3).
C: f′(x)=0有一个实根,且x1∈(1, 2).
D: f′(x)=0没有实根.
举一反三
- 1.5设函数f(x)=(x-1)(x-2)(x-3)(x-4),则方程[br][/br]f ‘(x)=0有( )个实根。 A: 1 B: 2 C: 3 D: 4
- 方程\( {x^3} + x - 1 = 0 \)有( )个实根。 A: 3 B: 2 C: 1 D: 0
- 设f(x)=(x-3)(x-6)(x-9)(x-12),则方程f'(x)=0有( )个实根。 A: 1 B: 2 C: 3 D: 4
- 设f(x)=x(x-1)(x-2),则方程f′(x)=0的实根个数是()。 A: 3 B: 2 C: 1 D: 0
- 函数f(x)=x(x-1)(x-2)(x-3)(x-4),则方程f′(x)=0实根的个数为() A: 2 B: 3 C: 4 D: 5