一动点与两定点A(2,1,0),B(1,-3,6)等距离,则动点的轨迹方程为( )。
A: ( 2x+8y+12z+41=0.
B: ( 2x+8y+12z-41=0
C: ( 2x-8y+12z+41=0.
D: ( 2x+8y-12z+41=0
A: ( 2x+8y+12z+41=0.
B: ( 2x+8y+12z-41=0
C: ( 2x-8y+12z+41=0.
D: ( 2x+8y-12z+41=0
举一反三
- 一动点与两定点A(2,1,0),B(1,-3,6)等距离,则动点的轨迹方程为()。 A: 2x+8y+12z+41=0 B: 2x+8y+12z-41=0 C: 2x-8y+12z+41=0 D: 2x+8y-12z+41=0
- intx=5,y=8,z=7;表达式z=!(x>y)||(x=1,y=3)计算后的结果 A: x=1,y=3,z=1 B: x=1,y=3,z=0 C: x=5,y=8,z=0 D: x=5,y=8,z=1
- 过点(3, -2, -1)并且平行于xoz坐标面的平面方程为 A: x - 3 = 0; B: z - 1 = 0; C: y + 2 = 0; D: . y - 2 = 0.
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- #include[stdio.h] int main() { int x=1,y=2,z=3; if(x>y)if(y<z) printf("%d",++z); else printf("%d",++y); printf("%d\n",x++); return 0; } 运行结果是: A: 1 B: 41 C: 2 D: 331