用 “一对一法”, 实现图 [tex=3.0x1.357]OnZlyU4aaoT/2QqS3uuJJg==[/tex]所示的时序机。[img=334x292]17d3de20b9c2c21.png[/img]
举一反三
- 用"计数器法"实现图[tex=3.643x1.286]RbSe5iZrqGTwsUPWVdYXzuDTOM9DnU6hRQRjF5dH0nE=[/tex]所示的时序机。[img=334x363]17d3df067b6572e.png[/img]
- For what values of a and b will [img=746x216]1803474d8173a86.png[/img]be differentiable for all values of x? A: a=3/4, b=9/4 B: a=3/2, b=9/2 C: a=3/4, b=9/2 D: a=3/2, b=9/4
- 求不定积分[img=121x54]17da653839aa6ae.png[/img]; ( ) A: log(x^2 + 3*x + 25/4)/4 + (5*atan(x/2 + 3/4))/4 B: log(x^2 + 3*x + 25/4)/4 C: (5*atan(x/2 + 3/4))/4 D: log(x^2 + 3*x + 25/4)/4 - (5*atan(x/2 + 3/4))/4
- 一随机变量X的E(X)=12, D(X)=9,用切比雪夫不等式估计P(6 A: 1/2 B: 2/3 C: 3/4 D: 4/5
- 应用Matlab软件计算行列式[img=110x88]17da5d7b00219d6.png[/img]为( ). A: x^2 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 B: x^3 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 C: x^4 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 D: x^5- 6*x^2*y^2 + 8*x*y^3 - 3*y^4