• 2022-10-24
    分别用部分分式法、幂级数法和反变换公式法,求下列函数的[tex=0.5x0.786]QjholeuuB2uvquRe6w/kgQ==[/tex]反变换。[tex=8.5x2.786]qFFypBYyU+5hsKClgmlmaRmuoLQWQUNKLuye5bv/yjrp8xs7fDk19B8KMRFJ63yss36N6/nmIYz4AxYPOrABrA==[/tex]
  • 解 部分分式法[tex=15.857x2.786]qFFypBYyU+5hsKClgmlmaRmuoLQWQUNKLuye5bv/yjrp8xs7fDk19B8KMRFJ63yseCDJbUxGoARHuSkh8mu3wmyuOr3gIe7g5nqiD7sJ2Uanc7gJ/6T79hO4BmzEVkf8[/tex][tex=16.857x2.786]PGpszwWOivj2oNl8FLLJp1ictyllMIuHpnfU67GHnI5qxhciTFKJCtb3hiWv8UBSQQDpKL/UDX+x5qaGnO40Gr2Rq7BmeOOlNB+HvsA9LNxubt4R8WjnEj78w+LoNnJW[/tex][tex=4.786x1.5]wT8keTbRLR/L45Q4ooKTN07VrscrNHcunSxnk5IvAgY=[/tex][tex=10.857x2.714]0n60tHpXAPj3oQFhQ2VDAlBI12J07kfCgzxHMLzonQrfwhncP6oOBXhI9uImPlLb2yDfeiXJJHYn7ec/790jdw==[/tex]幂级数学[tex=22.5x2.786]qFFypBYyU+5hsKClgmlmaRmuoLQWQUNKLuye5bv/yjrp8xs7fDk19B8KMRFJ63ysNnb0waqjXt0SZUBPDuo/V50oTw3IZyuQIWqJf19ut50a5UxhVdaGvBVin6+qjdkp[/tex][tex=23.571x1.357]HHp31kMaa1mf8346u9nvlI60UdT1MYnmVxizFQM3tUH+7tuutGtfcZ9ggNIzYdiXyMT+cyAMjZfwF6iHaJkJBPnVWf7E2Q4Itrll6uw/aGnnO51Z1YMOrPaFhFlauNX0[/tex][tex=24.071x1.357]FyNTs/SFXhmxCPtiHvKr1CInosecnZHWgg9cB1lBr7eR3YRhMMPCPEr4Q+ss9NxX2/n5ja3GuqzNDy6u7OsmqAlpPByniiw09Ls2RyCqM9mXBYFwJqj4ezn6iE16SGwg[/tex]反变换公式[tex=11.214x2.929]/taImBGPA6VkL5MeaZ/sX8uitLgiOtusvMbiPPUZ53LOPkuEf85BIZCt2NA8t6iybYr/2krKRDID1o68YY7yim34Ica72o3uYC4vUytYwuY=[/tex]极点为2和1,其中[tex=1.786x1.0]3gojbD9Jvci5KGn3ySrQfQ==[/tex]为2级极点。[tex=24.0x2.5]ipxLExIebCmsSIe1lQkkZDK3W/k3+d59wSgAbDKFcGHZBwKVB8Y4YqFBcvojox/4tqgne8Dd71djH1Zgj7CwagHs8ZCfzCorM4yVYjvGmSZ+GpALoZT9p0yvRnXAuCCm0jp1C9IqyIVy2We4vM1EUc1Lut7DlyGV2kuvbrCI1ow=[/tex]

    内容

    • 0

      求下列拉普拉斯变化式的[tex=0.5x0.786]QjholeuuB2uvquRe6w/kgQ==[/tex]变换[tex=2.071x1.357]29VC7/QzZwPFwxPgEQACEg==[/tex][tex=5.0x2.214]TCfezyS1Cxeq/xM+LT8iuPmNyaAFYx2fa5swDTmAUnA=[/tex],设采样周期[tex=3.143x1.0]3pO+y1A1otsg2YKS8sxYvg==[/tex]

    • 1

      求下列[tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex]变换的反变换。[tex=6.786x2.929]zqTW4D6Adpffp5urMyZTMvMzGC0X+B6MUqSto2LmWzN/QCPKVovHZ7GlW+cMBk5QdLTu2ep53bi3zWbY3/+dBY8MsbaEj2O5FCB6H0NRFdA=[/tex]

    • 2

      求下列[tex=0.5x0.786]gdMkE6SnyZedYLxpUxdkaQ==[/tex]函数的反变换([tex=2.357x1.0]7uYv/Vl6CBg9JTOroBoExw==[/tex])。[tex=8.071x2.429]b5mSSTuf0rlXnj3vtPVYILfQMMTGikwJnvvxTfsaooVVybq0pfd6S9atoV7pP+XdBtoh3j+YnUO+q7Llede9pA==[/tex]

    • 3

      已知下列[tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex]变换,试求[tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex]反变换[tex=2.143x1.357]ESyw8iilJMUn3FxCyikB/8XCfa0IqFh7zB5QN3e53FU=[/tex] 。[tex=8.714x2.429]H0r7HOEro2H3zl08F2vslCemSwBHwo5Tx0dNOc3SxxY=[/tex]

    • 4

      求下列[tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex]变换的反变换。 [tex=6.071x2.643]SY//jjHhf+4nYqc0Pwtat7pP0i1m5f8muIFyK6eUuAI=[/tex][br][/br]