曲线z2=5x,y=0绕x轴旋转一周,所生成的旋转曲面方程为()。
A: x2+y2=5x
B: y2+z2=5x
C: x2+z2=5x
D: z2=5(x2+y2)
A: x2+y2=5x
B: y2+z2=5x
C: x2+z2=5x
D: z2=5(x2+y2)
举一反三
- \( xoz \) 坐标面上的直线\( x = z - 2 \)绕\( z \)轴旋转而成的圆锥面的方程为( ) A: \( {x^2} - {y^2} = {(z - 2)^2} \) B: \( {x^2} + {y^2} = {(z - 2)^2} \) C: \( {z^2} + {y^2} = {(x - 2)^2} \) D: \( {z^2} + {x^2} = {(y - 2)^2} \)
- 【单选题】将xoy坐标面上的x 2 +y 2 =2x绕x轴旋转一周,生成的曲面方程为(),曲面名称为(). A. x 2 +y 2 +z 2 =2x,球面 B. x 2 +y 2 =2x ,柱面 C. x 2 +y 2 +z 2 =2,球面 D. x 2 +z 2 =2x,抛物面
- 设x=2以及y=3,下面代码的输出结果是。if (x >; 2)if(y >; 2){int z = x + y;System.out.println("z is " + z) ;}else{System.out.println("x is " + x) ;} A: x is 2 B: z is 5 C: x is 5 D: 无输出
- 图示的力分别在x、y、z三轴上的投影为() A: X=2√2P/5,Y=3√2P/10,Z=√2P/2 B: X=2√2P/5,Y=-3√2P/10,Z=-√2P/2 C: X=-2√2P/5,Y=3√2P/10,Z=√2P/2 D: X=-2√2P/5,Y=-3√2P/10,Z=√2P/2
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$