单室模型静脉滴注给药达稳态前停止滴注血药浓度随时间变化的关系式
A: C=K0(1-e-kt)/VK
B: lgC’=(-K/2.303)t’+lg(K0(1-e-kt)/VK)
C: lgC’=(-K/2.303)t+lgC0
D: lgC=(-K/2.303)t+lgC0
E: lgX=(-K/2.303)t+lgX0
A: C=K0(1-e-kt)/VK
B: lgC’=(-K/2.303)t’+lg(K0(1-e-kt)/VK)
C: lgC’=(-K/2.303)t+lgC0
D: lgC=(-K/2.303)t+lgC0
E: lgX=(-K/2.303)t+lgX0
举一反三
- 单室模型静脉滴注给药达稳态后停止滴注血药浓度随时间变化的关系式() A: logX=(-K/2.303)t+logX0 B: logC=(-K/2.303)t+logC0 C: logC′=(-K/2.303)t′+log(K0/VK) D: logC′=(-K/2.303)t′+log[K0(1-e-KT)/VK] E: C=K0(1-e-KT)/KV
- 单室模型静脉滴注给药达稳态后停止滴注血药浓度随时间变化的关系式为()。 A: logX=(-K/2.303)t+logX0 B: 10gC=(-K/2.303)t+logC0 C: logC′=(-K/2.303)t′+log(K0/VK) D: 10gC′=(-K/2.303)t′+log[K0(1-e-KT)/VK] E: C=K0(1-e-Kt)/KV
- 单室模型静脉滴注给药达稳态后停止滴注的血药浓度随时间变化关系式 A: logC=C0(1-e-kt)/VK B: logC’=(-K/2.303)t’+log(k0/VK) C: logC’=(-K/2.303)t’+logk(1-e-kt)/VK D: logC=(-K/2.303)t+logC0 E: logX=(-K/2.303)t+logX0
- 单室模型静脉注射给药,体内血药浓度随时间变化关系式为(). A: C=k0(1-e-kt)/VK B: logC’=(-k/2.303)t’+log(k0/VK) C: logC’=(-k/2.303)t’+log[k0(1-e-kt)/VK] D: logC(-k/2.303)t+logC0 E: logX=(-k/2.303)t+logX0
- 下列关于一级反应动力学方程的正确表示式为() A: lgC=lgCo-(k/2.303)t B: lgC=lgCo+(k/2.303)i C: lgC=lgCo一(2.303/k)t D: lgC=lgCo+(2.303/k)t