当\( x \to 1 \)时,下列不是无穷小量的是( )。
A: \( {\left( {x - 1} \right)^2} \)
B: \( \ln x \)
C: \( {e^{x - 1}} \)
D: \( \sin \left( {x - 1} \right) \)
A: \( {\left( {x - 1} \right)^2} \)
B: \( \ln x \)
C: \( {e^{x - 1}} \)
D: \( \sin \left( {x - 1} \right) \)
举一反三
- $\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
- 设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)
- \( \int {({1 \over x} - {2 \over {\sqrt {1 - {x^2}} }})dx} = \)( ) A: \( \ln \left| x \right| + 2\arcsin x + C \) B: \( \ln \left| x \right| - 2\arcsin x + C \) C: \(- \ln \left| x \right| - 2\arcsin x + C \) D: \(- \ln \left| x \right| +2\arcsin x + C \)
- 函数$y = \ln x$,则${\left( {\ln x} \right)^{\left( n \right)}} = {\left( { - 1} \right)^{n - 1}}{{\left( {n - 1} \right)!} \over {{x^n}}}$。( )
- 函数\(y = 1{\rm{ + }}{1 \over x}\)的导数为( ). A: \({\rm{ - }}{1 \over { { x^2}}}\) B: \({1 \over { { x^2}}}\) C: \(\ln \left| x \right|\) D: \( - \ln \left| x \right|\)