• 2022-10-27
    设[tex=19.357x1.357]OL1Qd62QJJVWm7/43Ge12CW5v26g2gwqYzCofGFzuby685vU6lLZHc1oY/DAj5c+qx9lo7YUm3IQN2GrF59xhbyatkr50WOgIDdBTDpNcFk=[/tex],用正交曲线坐标[tex=2.714x1.0]rc9uiQphVAZEplDwk4MBJw==[/tex]表示 [tex=5.286x1.357]lBXXZYMMrxJ2+/5vAU9Evc3wI7Ju7riXuJXUnk08630=[/tex].作为特殊的情形﹐求用柱坐标和球坐标表示[tex=1.929x1.0]PeWCG4wCBimuxKaRnxEGpg==[/tex]的表示式
  • 解:考虑向址a通过由曲面u=常数,=常数.e=常数所界的小立体(接近于长方体)V的表面S的通量,如图所示:[img=334x226]178f1ea9ccf0b8e.png[/img]在u曲线上,只有u变化(v和[tex=0.643x0.786]w3w3weJ46ITy63MtvkP9fQ==[/tex]都是常数),故[tex=13.286x2.429]A1dLESRm976CQeAVi6PeIDhky0TK9f6i0SaE9Ldj26u/nXF1IgHcdXl0MjxJULk6fFqbRmjxJo1lZYR2YHHBLBGmrrHPbX5Gay2DmFuGKYy1vE1+VcskRkt7xMlcg3rAZMOeCF6Y5roz9W1z1fiEtzWybodj+UGU+nOZXJb9UvusIVhcb2XrbbVR4vJ6hROgRBs92o3wYTx/r0wU/8nBy1ZQfMj1ZvOEGePgabvQDYLE9T77K9vVMxcan2+C7hgA[/tex]从而,[tex=6.429x1.357]HJDVztY8nYjAKzXP6t/+xT1X6eJGrIMBJrbRr49NU7ttcEDoDkl5nhlyHftpc8p40yjysQv1pQ6W1kfWREggsg==[/tex],其中[tex=28.286x3.357]vCFQ7a8X45qJNcH0zgpdif49WNFz2TVF2r6fPZC9j/rr07lz/bNBUFisutdsv33+CM05H03dsDxiyxWGihHYRjodUoPUl0vfsBTfGxpo0mf1ken2sLFNjLiZEqe953u0g5OsOUqhQjPx8RQEUvYFUIcW95CSQk9zyrFfjaJLMpc3fYs4MduVEpG0AHQOYTdG32/nVXHxXXikxy0PLEJgM+3c6ydCicFwfDFWbnUSiYNbQekty2c6Msc2KTF8MaxXYnijOKzqmiiKWg/f1SVnM4ox596Csn87G2lM5vVLd2JcVZhOasSyb+O96Gbe3A4iwmI6W+0m0E93NVWmWK/stphOgWyvLSoLimwaH/HsTL0DATX0csnjDcAkvRa6Vv48dLvQtTieEg+owzzNiwE4lQ==[/tex][tex=1.429x1.214]HJDVztY8nYjAKzXP6t/+xXO79kwe5FKpy/xiCE7E1AE=[/tex]为u曲线上的弧元素.同理可得,[tex=8.857x1.214]Gm8XrQ1H+qMdw1J3KCGz0aS0HnR47MT0JtwFsR2WWyyL72ocpMJ56fHnmJE7KN5utqGE331zUx97vX8wfmnfqpa13RnMQp64qyLRIGmHTUc=[/tex],其中,[tex=3.214x1.214]Gm8XrQ1H+qMdw1J3KCGz0ddBNxJj98ZHoDyaS5iu7l73ZvqDMKtQBEHmHQqNRGLL[/tex]分别为v,w曲线上的弧元素.而[tex=31.143x3.357]lfKlzMs946FvqXA907tyi7c8Aq2z32GQLEi2HjdLVcxG3hBLPa8IQCeh54ux0k83ir9moGHA5mPu8qhLRFRGT6PYhMlel4uxcItl5OOq/OoWLeZINvjD4wEYQFS35JZJH2kG0YKSURw73Sw0yanl77+NyVVjUn8MEo6Cnh/5fViZjgVYvTnxpRWQj9a6xp10E+A8/AcB3IemuaFf1AxiBtPGmTm9z+I2kMJRmWG3L+WSxpimvF/2mc8hxD0dcc8cJIaWygYGSuJtHuVIrf6PTQ2AE/ESrE3clFd6ML5ODTbh4qXHFaJIb/1blJxfXyYtleJLX9U6BA/VJlUr/16hIJqq3GdnSRd19sSXRBazN69EvjgI9N+4K7xKbsaJqOFVsFSZ3TG8JzoJllccWIEiLIWxtvMbgZp/RQPi+st6AwY=[/tex]由于坐标曲线互相垂直,[tex=5.857x1.214]d88A3mETprT2BzR3d71ShnGSpPOfPYlq/6H0xquiXIK6YGdQvDHeuJUo9aX/9Uq3[/tex]都很小,故V接近于长方体.因此,其体积为[tex=19.071x1.214]G9Ens5cYc4bdKIx+IPa8rF+n70Z6hwIMIpLQXVslHgd+UFYhyHg6bwFtbmC+koRVvTcXenO1dQ2+d2ENgIb0YmsDRhsQj7XyNkiCmfWOLeON8AqcbIfidm2/2JT7yRpZ7TCE1SPw+D9btiANLlMH+DygGiHht8lEp1NiOKu0U+5NbFUFeZ/TwLpORoYWMfbw6g/eEJuhgygiRgde/tpD4g==[/tex].现计算a通过V的表面S向外的通量[tex=5.429x2.643]Co/m/1+SBc2BXXWpLYMLr3AsXmZaHYNKpohfpQ3uI5w=[/tex]共包括六块小曲面,记垂直于[tex=0.929x1.0]r0KpoM0yenAp9VEZLQVtpJ0bjaI++2iNjTTnh/p36KA=[/tex]方向的两块为[tex=3.0x1.286]ZWYQkdZiA+Pb0KaI80jD50NSWjIpJMO8tNrqy4hku4U=[/tex](即图中的[tex=4.786x1.214]Qzowzhwq2YrAkmFEe8972kfzmjFD4XMPbNH0ncfbWAo=[/tex]与[tex=4.5x1.214]Nnn5Te3l1Cy82yjslAlpZx/0VNl5NgBU1Coi1wgloiw=[/tex]),垂直于[tex=0.929x1.0]r0KpoM0yenAp9VEZLQVtpBhydqh1yrtfuUTWffnNiTw=[/tex]方向的两块为[tex=3.071x1.286]dABOzu1tTFtDayy4qSaOhVDTCC1SxMFoM8eNj02PWOg=[/tex],垂直于[tex=0.929x1.0]r0KpoM0yenAp9VEZLQVtpPEzlj6pmtKQTN8hYHRqIw0=[/tex]方向的两块为[tex=3.0x1.286]MP86onrQ/3LtJO9zuqKl5w==[/tex].显然,由于曲面很小,有[img=523x77]178f43b218ce4c4.png[/img]同理可得[tex=40.214x2.786]DOsoFzkR0JvEwHsisqduPWZpmXYzCrIKVe6z7lZKZBg9CbdV2i2IsrMaCWmrt6gdKah4b2dRnhEagxKnCHwAF//cGm3JQOo2SFGoZyS8K6PGvwnMN5f61jJTVW7gKgnwAOzXRFtxx4E4Kkt7cLuWY27Jc30iKMm8MboKtN9fRJxBCslneydMBhGEQHJfWWk4SueOo8JqJcg/bXLBC1VnfYaiRU9O7s5pSF2FU/aCJpIR9HzPf/zzseVkZrbhsJR3Fs1RzbfL4qRqZbg/qmpwwTV32Cc0/y+oRVJoAuynKFAuaeA2pHt46KZauIAGyop+erSfvQDDv/gKensT1WeXpigR2upyUrX++71OxfnKk4/B9GgCdawMyElwluFd3KHCCc+LxSWXQ8Rf2Rb2DSvrBkKOS+VPQKHrEKSZS/rxVfdp6YJ43YJUKC05UlGHo3oKPIBsahjXQusPINPbNaly2g==[/tex]相加即得[tex=25.357x2.786]Co/m/1+SBc2BXXWpLYMLr728ykGTEWEWESEnEpxD16HE1FhE6T6UGGjktI77Pcqz1u4GtK/2Qg3oZtOwvaku1l8jIMc9u8J/W7gD9MCTdVohKDVYEqkOujlsGjCgsat7rLzgYoxSbubSLRe/JmQKotiQ4GwmaNM/xRmVEQT2bwJ2mKF6drzgNlzpE9NAR+01vuQjYZC7IvxJgjoZxJT1hVCbkuiTI2l+XzKsoao46MZUXbhm+lTfLd1BupKN0OldGKpOAyEACohNS0n7/F8+IByFnBphQZKI+T4E3ObA4I7l3EY13vKO2UxKbXa8MzJQ[/tex]于是,[tex=26.429x2.857]tqP6FBDV6i738yfzl75lpCbZo/r/NcwBFiio1eujQd20J2fGAL+XI+cWGmDPucnirv/302pPG3iC//CuSIlwRRzPoknkz4Xf2a/iwbUZpgbrlnLxbUdnxwmpi483CvkJqpz4KowQORnfJPEwQRaFWZsjFQvGJip2yuqBZ2CM3NNtOAif2sn7BIRmW//Pzkfw9YDkE7ul8kswop3hMW2mbaRlnbxMso02JRdjS6NWP03yihdEfBaPHmZFvBcJ0NvnUUqrNO1yO59eGJw70+zs0wUrXjI9Y3nwg/DY8JEVfVvSLKgZQiCz1LDDzpTbCFRq[/tex].显然,当小立体V愈缩向点M(V愈小)时,上述各近似等式都愈精确.于是,令V缩向M(即S的直径d(S)趋于零)取极限,由题意得[tex=32.0x2.857]lBXXZYMMrxJ2+/5vAU9EvV+2WDRGJxyGsDRFo9an7PqcX21GS6I+cLHt+5aYf8UYocYC1IwjvlSjvuBgQMboBgHXXIzRYexwgWRGSVye8BDMuphjWIlsbkIqHcMI35lci959FNKddQQOE2mp0PkhRQuKOWnREY+TvuIcqGDsgmw9beOdfCfqCehx8yKddxpXZsZF9e4LtIU0elNdfMSEn/Qnywa6c5G/Nr0jaM3lzIV9M48WCDSkgwxdD33ypv+TS+bgKIMZJiP2OCDB6Hexzb4IXWzPcp/98CAs6yd+JY7+x4cvtimmMZytEv3LRTTjHuhNCAmVFtyrVrtMqylJp/ClRRhvM/Hp07k8xkm+YIPiqco7q486VmxHzE3ae8A2[/tex]特别是在柱坐标情形下,有[tex=20.286x1.357]dvXThQhMYYhog6Q3gP7pnpdqRCcjt9X6hBW/6AfkI2F8hZ+6ks+/zt/1Uo5EL3/5xsXEUAhXe7ez36UnPRKc7BdM0XO/i9A0otVGI//qIjk=[/tex]从而[tex=34.214x7.214]Ck4j1YFlvVH5wCAykOEMi3b/GKDDXUM0ajSeZBHLD+ZtfPpfTOCNR9Pzb0e4ZaEhB/FgObWkiFWYebjyf1FGMdIpHUMeWFG/6HPG8zoC9Eumvijfs3npUsFYenyh/yP01JffV/UMJA3SgOGa+0AOY+f61bi2MBV4stAAcItzabzbYFmWSEk+TlsOoU1YOC24EH1l/LR2XKYqX6fg3t6/x3pS9/7NazBNY2U8zUEUjHmbvnMzS8701SAatyAp7JL/w077zO8r2uk29b1+papqhz2mMoqsfVnSpVY/ZxXjmw6juRvjNcGRDiIpzgi+HHWSyGhLIWcInaDaD+xizo2F/76n3iV1BM2brri4Qz2eGhumBl39fZ25qXS5vMtPveC9zwL/Nn5Q2Ry6uck/qFJHzH9KtYK/v+eqB2/B/fYC4U8myf5lNcxk73batEheZiXGmo13q/NsU9j+8nfZ1jaP9Asz4tfFUNaXd8+rol3Z5YDD4nAOkIdSxoUZKoNCNf0gdJhrssd613zfIakj6zUGgZdxBYYINM7EpmPlT5t0Qf6oiRYRQlLDF/DzVVI2aQIysSOBRzpOp2W6is/+M0814m1MnmAzCZCo2KikvIP72r03HjO9iwiD4t2EkwlC34a3BaroRNt9+70gR4Y8Vq2lZpMMW0U2XPVNBa5Ee0fMklvoR7Sr9F9BhgxQNXuJb8fC[/tex]于是,[tex=14.5x2.786]lBXXZYMMrxJ2+/5vAU9EvTVznCZk67xld6d1UhqwSff3AnI8HSTDhhXVsHGmCZu//AZmNceR6VOW2qz8BCvlHqPjlXJGWAXnrO6CklFL2ljIKAECXkh0ZAJB88lQQr4qs9RsBbkehvbsmtaNd0J1XK3srFwlMpmFFfIL9PvMFi37d90NeFkK8ID2VxBwOdKxWair2v6y50URz5GgH14ixv2ze+bfZ1aX6jkBy9UrfXhSz2vnTfxKv7/TaygBD/uzp4rm7cf4Pdaaay4doK6ngA==[/tex].在球坐标情形下,有[tex=27.357x1.357]7KwtbX9gYwy4FpcgGheJg1T1L2kTjfbGOby8O+GfVmxTsXt6DFIPhYNinoLxZd+RXzsjut0+Gk/isg0hnMPDqFtxEfeLOf3+pFa/6XUjHFsclXab5jVax7Gs/ILGj4LgohVr5ql7Q1kzcxbHqrx4jaRNoqdOvuIRQHhnSOxyec0=[/tex]从而,[tex=33.857x7.214]Ck4j1YFlvVH5wCAykOEMi5gB2FsdYT3fDZWqbmtHpNPIVcYAs0JoFtXdkL2Acm/74icPlH9xihhq7ani2tRzkH2X10JnoaVDXRuFbfN5Xn2tS/5Rr5Vq9B8BZwlF87ISHXBL4NuG467opwjdb4VI2lDhMqlGknrfNkl5xghp/LQE/ihIQ3eTF3eLCg+QbQkkleE72149xfP8PO3bFmQcmGNy+3oSzirF32Gr1Vuq1Vg8/3nRoyFqOaN8+SAxYQD/InD6HZu1xK3sdxJQCQTDRtuc9AS1PwvfdMAvMWDcRzSOV1XzRlhgG6lwIxQqpBKSuI66Y7se9Rm8ra5NwptvOClA67oKDE8n3XRhTfq9ZkIn2Bnbpq8C92njdby+0dc4e67a2TCQQPeeKqofU+3hK1ovO6q1g/jm7NLhbHLVYqcSH0dDkQwnTJ3gAMljY082ElRjGvu4MChmabHyJaHk7lfdJOJVWoQSzQCDnRht72oG1K5xU8blPRHhvrlXzILrABTA2W2ATnKEG8AA9xlqXDUnejbfdDIvWzBIUzRy5NUPeQKW86jM2SB8Jw1djsKygtf2CGxv19As8ktSVxUPUo3wJ2v4NWZj7PIF6JoTpzM6D6H90CALanbDTlBvX27DV5CoyNFye43bPBAy6KlhzxE9GqebOUvOv6/d9lbXokx1G6Th8uge3aJqM44EE8gRIKc6wRw/LqEzmPW72gbrpA==[/tex]于是,[tex=46.714x2.786]lBXXZYMMrxJ2+/5vAU9EvZD3b0H33hS75uVvdesE6dYccxpl+fHIoJp9jNEWoke1sgoErV4OeXy1kvjjrQTymtEjbE0jkLdrCz3sZNrAOE8hNM2S/84RNAPnQMVVuf3pDWLzuZMo3GUCZWfwH3FxZ+iVaYM/4sd8CdP9ZuFfGTg8LBfaQbVxFDIVbCsVPZqEFh+qHZ/cpzWrgzJAE9PtY/qqU7EMZM6ygs7cgdFvQfdQ1wCNPVKo+GyeCD9ETKsqcM1Lj6saXjzpF26aW21VAPHB6ppg7GjpYgJLOq6UbYJTPSAXWXCsnLKQ1qgRmP0vDPGDTLBhIyeoiFYDHvisrPTIpRYu4CQrr1PUUvjUOl0yNq+msJ4Td4DywdbP8rsM8AhuaVxm69Lwp0aSkH747fxVo/rsyDTM5/Qy9qWklHLrd0UOmanKkixOIMnXyy2GzyB3GoBuCJt06tU5WZ0eZpS3B6EfKv9DQnVRXRN2cAlYgmYlGeLiYVjMtBlmfFGeyau1w1fatkyc+Tuvb/hTFYa7vGZjlDvWpn5QeIPKui9EfKTclq7cpDZFAN7+0/NJz1Ycy/tRaVGVbk777U8xVPyFpXrepJHxI1w5RLhEarCzvomageev8PkRnjUeWoFz[/tex]

    举一反三

    内容

    • 0

      >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']

    • 1

      set1 = {x for x in range(10) if x%2!=0} print(set1) 以上代码的运行结果为? A: {1, 3, 5, 7, 9} B: {1, 3, 5, 7} C: {3, 5, 7, 9} D: {3, 5, 7}

    • 2

      A=[1 2 3 4 5 6 7 8 9]A(5)=[]A=1 4 7 5 8 3 6 9

    • 3

      用球坐标表示的场 [tex=3.714x2.357]JYk/SYJrBf7wG3NMUEM57qFRs8rZ9zXBXqEy95XzlqQ=[/tex],求在直角坐标系中点 (-3,4,-5) 处的 [tex=1.357x1.357]JMVZBPFt4bk1fk+047O4eA==[/tex] 和[tex=1.143x1.214]7XtNgaFutzkud0sRVWgRYQ==[/tex].

    • 4

      【阅读理解(选择)/完型填空】基于以下描述回答 1-2 题: 下表是 9 名评委对 10 名学生的毕业设计进行等级评定结果: 评委 A B C D E F G H I J 1 1 2 4 3 9 6 5 8 7 10 2 1 4 2 5 6 7 3 10 8 9 3 1 3 4 5 2 8 9 6 10 7 4 1 3 4 5 2 6 10 8 7 9 5 1 9 2 5 6 3 4 8 10 7 6 1 4 9 2 5 6 7 3 10 8 7 1 3 5 10 2 6 9 7 8 4 8 1 3 5 7 6 4 8 10 2 9 9 1 2 8 4 9 6 3 7 5 10