设f(x)、f′(x)为已知的连续函数,则微分方程y′+f′(x)y=f(x)f′(x)的通解是:()
C
举一反三
- 设二元函数为z=f(x,y),则f(x,y)可微分是f(x,y)连续的 条件
- 设f(x,y)为连续函数,且f(x,y)=f(y,x),证明:
- 【单选题】设函数 f ( x , y ) 在 x 2 + y 2 ≤ 1 上连续,使 成立的充分条件是 A. f ( - x , y )= f ( x , y ) f ( x , - y )= - f ( x , y ) B. f ( - x , y )= f ( x , y ) f ( x , - y )= f ( x , y ) C. f ( - x , y )= - f ( x , y ) f ( x , - y )= - f ( x , y ) D. f ( - x , y )= - f ( x , y ) f ( x , - y )= f ( x , y )
- f(x,y)为连续函数,f(x,y)=f(y,x),_
- f(x,y)为连续函数,f(x,y)=f(y,x),
内容
- 0
f(x,y)为连续函数,f(x,y)=f(y,x), 。()
- 1
设二维随机变量(X, Y)的联合分布函数为F(x, y),则FX(x)=_____。 A: F(∞,x) B: F(x,∞) C: F(x,x) D: F(x)
- 2
【单选题】设函数Fx(x),Fy(y)分别为随机变量X,Y的分布函数,则下列函数中可以作为某二维随机变量的分布函数的是( ) A. F x (x)+ F y (y) B. 2 F x (x)- F y (y) C. F x (x)* F y (y) D. F x (x)- F y (y)
- 3
已知函数f(x)是定义在R上的奇函数,则下列函数中为奇函数的是() ①y=f(|x|)②y=f(-x) ③y=xf(x)④y=f(x)+x
- 4
f(x,y)为连续函数,f(x,y)=f(y,x),[imgsrc="http:...29ec20967d4aca.png"]