两个本原多项式g(x)和f(x),令h(x)=g(x)f(x)记作Cs,若h(x)不是本原多项式,则存在p当满足()时使得p|Cs(s=0,1…)成立。
举一反三
- 对于整系数多项式$f(x),g(x)$.若$g(x)\mid f(x)$,则存在整系数多项式$h(x)$,使得$g(x)\cdot h(x)= f(x)$.
- 设f(x),g(x),h(x)是数域P上的一元多项式,若f(x)∣g(x)且f(x)∣h(x),则下列说法不正确的是 A: f(x)∣(g(x)+h(x)) B: f(x)∣g(x)h(x) C: g(x)∣h(x) D: f(x)∣(u(x)g(x)+v(x)h(x))(其中u(x),v(x)为数域P上的多项式)
- g(x)=±h(x)是两个本原多项式g(x)和h(x)若在Q[x]中相伴的
- 两个本原多项式g(x)和h(x)若在Q[x]中相伴,那么g(x)/h(x)等于多少
- f(x)(系数为an…a0)是一个次数n>0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?