• 2022-06-05
    n^2*(x^1/n-x^1/n+1)n趋近于正无穷,x大于0求极限
  • 用Taylor展式:e^x=1+x+x^2/2+o(x^2),当x趋于0时.于是x^(1/n)=e^(lnx/n)=1+lnx/n+(lnx)^2/(2n^2)+o(1/n^2);x^(1/(n+1))=e^(lnx/(n+1))=1+lnx/(n+1)+(lnx)^2/(2(n+1)^2)+o(1/n^2);因此有原极限(n趋于无穷)=limn^2(lnx/(n(n+1))+(lnx)^2/(2n^2)-(lnx)^2/(2(n+1)^2)+o(1/n^2))=lnx.

    举一反三

    内容

    • 0

      判断差分系统的因果性(1)y(n)=x(n+1)-x(n)(2)y(n)=x(n)-x(n-1)

    • 1

      \( {1 \over {1 + x}} \)的麦克劳林公式为( ). A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \)

    • 2

      将\(f(x) = {1 \over {1 + {x^2}}}\)展开成\(x\)的幂级数为( )。 A: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - \infty < x < + \infty )\) B: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1< x < 1)\) C: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\) D: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\)

    • 3

      已知函数f(x)=logax+x-b(a>0,且a≠1),当2<a<3<b<4时,函数f(x)的零点x∈(n,n+1),n∈N*,则n=()。

    • 4

      当n≠-1时,∫x<sup>n</sup>lnxdx=()。 A: x<sup>n</sup>[lnx-(1/n)]/n+C B: x<sup>n</sup><sup>-1</sup>[lnx-(1/(n-1))]/(n-1)+C C: x<sup>n</sup><sup>+1</sup>[lnx-(1/(n+1))]/(n+1)+C D: x<sup>n</sup><sup>+1</sup>lnx/(n+1)+C