• 2022-06-06
    用图乘法求图所示各结构的指定位移。[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex] 为常数[img=1048x374]17a271c83de2b82.png[/img]
  • 解:绘[tex=1.5x1.214]6SShOxpmUiVM5bnQ1vavHPGq703d+ly3Irxa2sHejjo=[/tex] 和 [tex=1.0x1.143]i6RTo83DF7DQpydNXPqazQ==[/tex] 图, 分别如习题[tex=2.857x1.357]/XvIgsgGsctfzcJBTvHiybOS26Ck4X14bVujItJyuSw=[/tex] 图所示。由计算位移的图乘法公式,得[tex=33.071x2.786]NjYWLLHT5KlAuTCe0gVlAPHpASAg/DI0M/DrFt2AZnljZVeV8tlJYO8TkDy/XUT5kFk6XRPamO/FA2a9ucMdteq0a/ctr+nBnoZnFMvubQPWuf0zOLJkq4v2xsHruVDXHp0ZcSK3TUOlQoVp5FT0xug0QKmJBDBeBoA95eJbkHbHsQR8oV/9BSZaRyR/gKZaf+Oykk2jD1oRR2rAg7NCc5IlycbztTIJ/LptTZ3ohLco7Wfch/c2Fvyq/o+pVUBI0/Qp+OJmmfm8rc+TrzfEGyvKYOboObPFSdLeZRtkY0xBby6rKyOnk5djKLvlr+lGasbKvf2VeI8jCHFz7J3J4A==[/tex][tex=6.786x2.357]o2/Y8WxJO8boC1onfb8CQMs0gxxcADoqE5sioTAQxThOwGSi8aq+GB9A3eQmdM7m[/tex]

    内容

    • 0

      利用对称性计算习题 [tex=1.286x1.0]7noDMK2ViqAS+QZ4ygl2AA==[/tex] 图所示结构,并作弯矩图。各杆 [tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex] 相同,常数[img=818x446]17a3e261e107349.png[/img]

    • 1

      用力法计算题5-9图a所示对称结构,作弯矩图。各杆的[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]皆为常数。[img=280x251]179ebda3d1d0ed2.png[/img]

    • 2

      用叠加法求图6—29所示各简支梁跨中截面C的挠度。[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为已知常数。[img=401x210]17d127845297ab0.png[/img]

    • 3

      用叠加法求图6—29所示各简支梁跨中截面C的挠度。[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为已知常数。[img=383x196]17d1274c606621f.png[/img]

    • 4

      用力矩分配法计算图[tex=1.0x1.0]GqOMsRKoSA9JSFw5lv/vpw==[/tex]所示刚架,并作[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]图。已知[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为常数。[img=165x215]179cc9458da47bc.png[/img]