给定2个序列X={x1,x2,...,xm}和Y={y1,y2,...,yn},找出X和Y的最长公共子序列。使用穷举法时,对X的所有子列,检查它是否也是Y的子序列,从而确定它是否为X和Y的公共子序列。那么Y有多少个不同子序列
A: m
B: 2
C: n
D: 2
A: m
B: 2
C: n
D: 2
举一反三
- 已知序列X={x1,x2,…,xm},序列Y={y1,y2,…,yn},使用动态规划算法求解序列X和Y的最长公共子序列,其最坏时间复杂度为(<br/>)。 A: O(m * n) B: O(m + n) C: O(m<br/>* 2n) D: O(n<br/>* 2m)
- 【填空题】若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X和Y的一个最长公共子序列_____________________________
- 使用动态规划算法求解最长公共子序列问题,引入数组c[i][j]存储序列x[1..i]和y[1..j]的最长公共子序列的长度,则对于长度为m和n的两条序列,其最长公共子序列的长度为c[m][n]。
- 【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )
- 【多选题】设新息序列ε(k)=y(k)-y^(k|k-1),则针对随机向量x有以下关系式 A. proj(x|y(1),y(2),……,y(k))=proj(x|ε(1),ε(2),……,ε(k)) B. C. 设A为常数矩阵,则proj(Ax|y(1),y(2),……,y(k))=Aproj(x|y(1),y(2),……,y(k)) D. 若E(x)=0,则proj(x|ε(1),ε(2),……,ε(k))=proj(x|ε(1)+proj(x|ε(2))+……+proj(x|ε(k))