举一反三
- >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
- 利用行列式的性质计算下列行列式的值1 2 0 0 02 5 0 0 0 9 8 1 2 37 6 4 5 65 4 7 8 9
- list(range(-1,10,2)) A: [0, 2, 4, 6, 8, 10] B: [-1, 1, 3, 5, 7, 9] C: [0, 2, 4, 6, 8]
- 双曲线x^2/16-y^2/9=1的渐近线方程为() A: y=±16x/9 B: y=±9x/16 C: x/3±y/4=0 D: x/4±y/3=0
- set1 = {x for x in range(10) if x%2==0} print(set1) 以上代码的运行结果为? A: {0, 2, 4, 6} B: {2, 4, 6, 8} C: {0, 2, 4, 6, 8} D: {4, 6, 8}
内容
- 0
set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 1
求以 [tex=2.357x1.214]u/hcg1/55F2pvtGMeEw9pw==[/tex] 和 [tex=3.071x1.214]5sVa6GD0b7ovTx2rohhG1G+NFmzyMDXRjuEJawew8Wg=[/tex]为特解的最低阶的常系数线性齐次方程. 解 由 $y=3 x$ 为特解可知 $\lambda_{1}=0$ 至少是特征方程的二重根. 由 $y=\sin 2 x$ 为特解可知特征方程有共功特征根 $\lambda_{2,3}=\pm 2 i .$ 所以特征方程为 $(\lambda-0)^{2}(\lambda-2 i)(\lambda+2 i)=0$, 即 $\lambda^{4}+4 \lambda^{2}=0 .$所以微分方程为 $y^{(4)}+4 y^{\prime \prime}=0 .$
- 2
执行下列代码后,数组的值是?[img=389x159]17e0b3a13c82cf0.png[/img] A: 一维数组{1, 4, 3, 2, 1, 0} B: 一维数组{1, 8, 0, 1, 2, 3, 4, 6, 2} C: 一维数组{1, 4, 3, 2, 1, 0, 8, 6, 2} D: 一维数组{1, 8, 0, 1, 2, 2, 9}
- 3
已知空间曲线的参数方程为{x=a(cost)^2,y=a(sint)^2,z=asin2t(0
- 4
“[ 2*x+2 for x in range(5) ]”生成的列表是( )。 A: [2, 4, 6, 8, 10] B: [0, 2, 4, 6, 8] C: [1, 2, 3, 4, 5] D: [0, 1, 2, 3, 4]