设 [img=16x19]1802e19cf606b3a.png[/img] 为 3 阶方阵, [img=15x19]1802e19cfe4c820.png[/img] 为 [img=40x20]1802e19d081f12b.png[/img] 矩阵, 则下列矩阵中, [ ]一定是对称矩阵.
A: [img=68x25]1802e19d11c287b.png[/img]
B: [img=46x23]1802e19d19e3f02.png[/img]
C: [img=60x25]1802e19d226a5f9.png[/img]
D: [img=44x23]1802e19d2b84bfe.png[/img]
E: [img=60x23]1802e19d33a21a2.png[/img]
F: [img=66x25]1802e19d3cc20e5.png[/img]
G: [img=61x23]1802e19d45fbc02.png[/img]
H: [img=107x25]1802e19d4ec84db.png[/img]
A: [img=68x25]1802e19d11c287b.png[/img]
B: [img=46x23]1802e19d19e3f02.png[/img]
C: [img=60x25]1802e19d226a5f9.png[/img]
D: [img=44x23]1802e19d2b84bfe.png[/img]
E: [img=60x23]1802e19d33a21a2.png[/img]
F: [img=66x25]1802e19d3cc20e5.png[/img]
G: [img=61x23]1802e19d45fbc02.png[/img]
H: [img=107x25]1802e19d4ec84db.png[/img]
举一反三
- 19、不等式[img=129x24]18031ef3b487214.png[/img]的解集为{x|x>3或x<2}
- 设随机变量[img=52x13]17e0c0edb27595a.gif[/img],[img=60x31]17e0c0edbed05c6.gif[/img],X与Y相互独立,则[img=90x14]17e0c0edcb304a8.gif[/img]= A: -13 B: 15 C: 19 D: 23
- 已知D(X) = 2,D(Y) = 1,X和Y的相关系数[img=109x29]180357352f85f5d.png[/img].则D(2X+Y+1) = . A: 19/3 B: 23/3 C: 28/3 D: 31/3
- 设 [img=16x19]1802e17c2bb94d8.png[/img] 为 3 阶方阵, [img=15x19]1802e17c3401061.png[/img] 为 [img=40x20]1802e17c3d3e764.png[/img] 矩阵, 则下列矩阵中, [ ]一定是对称矩阵. A: [img=68x25]1802e17c46a3a54.png[/img] B: [img=46x23]1802e17c53038b3.png[/img] C: [img=44x23]1802e17c5cc8890.png[/img] D: [img=60x25]1802e17c6662070.png[/img] E: [img=60x23]1802e17c6ff6d7b.png[/img] F: [img=66x25]1802e17c791d19f.png[/img] G: [img=61x23]1802e17c8257cb9.png[/img] H: [img=107x25]1802e17c8bc6a20.png[/img]
- 设 [img=16x19]1803037146209f0.png[/img] 为 3 阶方阵, [img=15x19]180303714f94789.png[/img] 为 [img=40x20]180303715814dd9.png[/img] 矩阵, 则下列矩阵中, [ ]一定是对称矩阵. A: [img=68x25]18030371608674e.png[/img] B: [img=46x23]1803037168ff1f3.png[/img] C: [img=44x23]180303717195e9b.png[/img] D: [img=60x25]180303717a4c2ed.png[/img] E: [img=60x23]1803037182dda33.png[/img] F: [img=66x25]180303718b9a05f.png[/img] G: [img=61x23]1803037194cc5e6.png[/img] H: [img=107x25]180303719d8c4a9.png[/img]