若一在线问题算法A的竞争比大于另一算法B的竞争比,则A不可能是该问题的最好算法。( )
举一反三
- 算法就是求解问题的方法,一个问题不可计算,说明该问题不需要算法
- 若算法的执行时间与问题长度无关,则该算法的时间复杂度为( )
- 若算法的执行时间与问题长度无关,则该算法的时间复杂度为(
- 有这样一种算法,运行一次可能找不到问题的解, 运行多次就一定能找到问题的解,且运行次数有界,这种算法是? A: 拉斯维加斯算法 B: 蒙特卡洛算法 C: 舍伍德算法 D: 数值概率算法
- 已知A是极小化目标在线问题[img=64x59]17d6042cee77c79.png[/img]的一个竞争比为[img=46x52]17d6042d1c15b6b.png[/img]的最好算法,B是[img=64x59]17d6042cee77c79.png[/img]的另一个在线算法,以下说法准确的是( ) 未知类型:{'options': ['算法B的竞争比至少为[img=46x52]17d6042d1c15b6b.png[/img]。', '对任意实例[img=49x64]17d604322aa16bd.png[/img],[img=276x185]17d60432399ab85.png[/img]。', '对任意实例[img=49x64]17d6043248f3059.png[/img],[img=408x185]17d604325a5c1c8.png[/img]。', '算法B的竞争比至多为[img=46x52]17d6042d1c15b6b.png[/img]。'], 'type': 102}