A: sinθ=直径平方/4倍波长
B: sinθx直径=频率x波长
C: sinθ=频率x波长
D: sin(θ/2)=1.22波长/直径
举一反三
- 确定波束扩散角的公式是() A: sinθ=直径平方/4倍波长 B: sinθ×直径=频率×波长 C: sinθ=频率×波长 D: sinθ=1.22波长/直径
- 确定波束扩散角的公式是()。 A: sinθ=直径二次方/4倍波长 B: sinθ×直径=频率×波长 C: sinθ=频率×波长 D: sin(θ/2)=1.22波长/直径
- 确定波束扩散角的公式是()。[分] A: sinθ=直径平方14倍波长 B: sinθ×直径=频率×波长 C: sinθ=频率×波长 D: sinθ=1.22波长/直径
- 确定波束指向角的公式是() A: sinθ=直径平方/4倍波长 B: sinθ×直径=频率×波长 C: sinθ=频率×波长 D: sinθ=1.22波长/直径
- 确定波束扩散角的公式是()。 A: sinθ=直径二次方/4倍波长\n B: sinθ×直径=频率×波长\n C: sinθ=频率×波长\n D: sin(θ/2)=1.22波长/直径
内容
- 0
$\int {{{\sin 2x} \over {1 + {{\sin }^4}x}}} {\rm{d}}x = $ A: $\arctan (\sin x) + C$ B: $\arctan ({\sin ^2}x) + C$ C: ${\arctan ^2}(\sin x) + C$ D: $ - {\arctan ^2}(\sin x) + C$
- 1
求微分方程[img=364x55]17da65386dfd612.png[/img]的通解; ( ) A: - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) B: (3*sin(2*x)*exp(x))/32 - (sin(6*x)*exp(x))/32 - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) C: - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) D: (sin(6*x)*exp(x))/32 - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x)
- 2
求微分方程[img=143x21]17da5f14490e50e.png[/img]的通解,实验命令为(). A: dsolve(D2y-2*Dy+5*y=sin(2*x),x)ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x) B: dsolve('D2y-2*Dy+5*y=sin(2*x)','x')ans =cos(2*x)*(sin(4*x)/17 - cos(4*x)/68 + 1/4) - sin(2*x)*(cos(4*x)/17 + sin(4*x)/68) + C1*cos(2*x)*exp(x) - C2*sin(2*x)*exp(x) C: dsolve(D2y-2*Dy+5*y=sin(2*x),'x','y')ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)
- 3
下列各组选项的两个语句运行结果不同的是? Dt[Sin[x],{x,4}] ,D[Sin[x],{x,4}]|D[Sin[x]Sin[y],x], Dt[Sin[x]Sin[y],x,Constants→y]|Dt[Sin[x]Sin[y],x] ,D[Sin[x]Sin[y],x,NonConstants→y]|Dt[x^2y^3,x,y],D[x^2y^3,x,y]
- 4
【单选题】求一个角的正弦函数值的平方。能够实现此功能的函数是 ____ 。 A. sqofsina(x) float x ; { return(sin(x)*sin(x)) ; } B. double sqofsinb(x) float x ; { return(sin((double)x)*sin((double)x)) ; } C. double sqofsinc(x) { return(((sin(x)*sin(x)) ; } D. sqofsind(x) float x ; { return(double(sin(x)*sin(x))) ; }