• 2022-06-05
    试判断高阶方程 [tex=6.071x1.357]uDURn6KTVSzuxHB9PQPJUjIt2ZY2HtcKH+GvqaXXz2jcUDBGvWD9XwMK8VqtAwMQ[/tex] [tex=3.429x1.357]F4WkWhNb1NBp9gRAEV41OQ==[/tex] [tex=3.357x1.429]lplvhEBKUkfMUsc07MCIR9NZqf4ihoV+V83BTPe0qS4=[/tex]的拉普拉斯变换类型, 但不必具体求解
  • 解:方程经拉普拉斯变换后变为[tex=25.429x2.429]P2PzoCVBUk1LzkGRDz/6OAnOvVwBDIGSZuFGM76/atWGzblVfXmccsMOaOQhYWqEzPqHsGCh/HRg/mCUUk/54of3QX6dv2v9DkB6p73PalanR5YgK2OvzjQfq85H0rc9[/tex][tex=17.571x2.643]AdvTIV+qVRBPlR6S577DG8JqL6MYIwFgLvk/oYcDlqQAFJDg/KsXJlHcB/v5UrITaZoCk6oNFQYpTaZs073x2VmJzrOotrgCGh/VjL9G2Xk=[/tex]化为分部分式后经拉普拉斯反变换求解.

    内容

    • 0

      以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)

    • 1

      用拉普拉斯变换求解高阶方程 [tex=10.286x1.571]uDURn6KTVSzuxHB9PQPJUlqKRbKXp7U7np6JnfUgFdVRjuszSlbSozLzpQ0YJ/gZkI6RmRmF4kJw+xaUxZf6qA==[/tex] [tex=7.214x1.429]9QTDIQcTHDeTxP3B9JduqO1XfD3XOBbjcz9rsLeINKE=[/tex]

    • 2

      用拉普拉斯变换求解高阶方程 [tex=13.143x1.429]uDURn6KTVSzuxHB9PQPJUjIt2ZY2HtcKH+GvqaXXz2i13OMKvjqI1YlXADJB83oDQS4DwKErpGq8LmuH+gn4f4OPxp6gf9qPPEuXD01qANc=[/tex]

    • 3

      用拉普拉斯变换求解高阶方程 [tex=12.0x1.429]uDURn6KTVSzuxHB9PQPJUmoPxkbkDWL+RFXUa6vTOA6n6Hxj56Ef1MX4iirDs4KTydzC0/ECNxnYUCk1RNVHag==[/tex]

    • 4

      证明:前[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个自然数之和的个位数码不能是 2、4、7、9