• 2022-06-16
    求函数[tex=6.857x1.357]vcG802Y4Fd8qOKpq/5MEvQsekRQaMwxWvyx7epdELco=[/tex] 的单调区间
  • 由于定义域为 [tex=4.643x1.357]WafKDm5071vVz9IYJgBhj8LbdrnQF2M50OcMtr5E7Yg=[/tex], 由[tex=26.571x4.786]Lgg2cfcbtm6Fi9INQBBIWdBhoQrV1BnskWSQyjBb65Ji4dYQuI0cGqdvdKHxvW5h3qLAcwckNkKNLGxLtkteUBHe+yZ3KPM9FF9sQDrJCeX034H7Gs4bWHx9Lz+Yxu1o/VKpiw5L/T8wcmOnmwlap3XT3E22hlOpotSMcoquIOVjaVsHap3c4jFoqNsj370nmMFX7p2Hp0gH3nkgKSEOfffNIQnfeOoBmHvPrYK8o/a7VRPntXEYLq3xWavnw03fobfS9TJvE4ffkqva++Ar0A==[/tex]而[tex=28.357x4.786]JPZ9P0p/LjXVr8hHOva34KUYW808u97OH/3nXUTRGlbA9Pm1Zo3e+JVXSJBpZjrEzOwrMF04CPDLhak4Q77UgVFaHRTSrBuKhcsWGuIGN3yWU12o+bCD4W/Rb8xnAvhY9jLWOrplBD4C+gy4VJgB+5kcv/q+GBKBlg3NCMP8ZBa0kSMfP7Cp2wJ72pY+xO4JEYQ3Pm5yk9Vrn4YCvXLiLAE+06Q4JSCR/kTAaQ8x2iyh1KPNrevUVxW0t+de41uQ[/tex]令 [tex=2.643x1.357]MUS2K0PJ2Tnx/pFRgMaqwQ==[/tex], 得驻点[tex=4.286x2.143]pQ/9+jkcYGt6b7wfTcCONydG6LqelBWwVwRMbOQKHBs=[/tex] 及 [tex=13.071x2.357]uK3AWslwbNxCOMojtls/2hqqvupHAn5kXDqS2RbZ/XOE9Q2u8kixAaWaztV7DN0IXHQWqNzYGc0xHvFS2W1ZPQ==[/tex], 这些驻点将定义域分为以下几类形式的区间:[tex=19.357x5.357]qVGb6XKaUKbKUtBTAADIGIEb3kI3ETmlt+opXaWDXxaYO5GRd1O0QnzdCyKkmGbDsISkdsb8k093AafEgZMl4iel/eb26B+c+u9+H+ADNVVkG5UueLvwSVQlwdmXoC9+rlIJqOV/21npJosgh5jVEI39d61Et4lAzqfXt/WhaK2B0XHPSDby4sr0dXuEx3IfoxEJgStUwxQk6mpXaWg+QzurckSNyWyEJ8cWLJ+t/YHFskYyELepMZdRLydW2baBkkLF46G5h3M1cQ8FXjQjny2CYaZQKT1j/qHOZ/DgRt/GQD0CM3b9GCk2AweVCQ76[/tex]分别讨论(列表从略)如下:当 [tex=7.357x2.143]mYXt/vcuDNaUSX+m+872CnFb6YVKfkX1PVfyGtvHRKc=[/tex]时, [tex=2.643x1.357]Lm96azQDEL3KOz8qAwJjXg==[/tex], 故函数在该类区间上单调增加;当 [tex=9.143x2.143]zWK1ZYKKZYnb3A4vP70IBphijdFN+HodwDM98z+t09yMyyS6uXMPPz7qDGvV5aaG[/tex] 时, [tex=2.643x1.357]7Wh2nulzli2HLW6/AqLubA==[/tex], 故函数在该类区间上单调减少;当 [tex=9.643x2.357]zWK1ZYKKZYnb3A4vP70IBhy3HC9+tarw15plMCc6ud0vY5r79tDFUB3g9B93qJJC[/tex] 时, [tex=2.643x1.357]Lm96azQDEL3KOz8qAwJjXg==[/tex], 故函数在该类区间上单调增加;当[tex=9.929x2.357]Uoe+wlVzPvZEd7+nS6zSiqo9r+C0UZg3QZKLNsCNFvVeukQyVSgBGkINrsWHjVex[/tex] 时, [tex=2.643x1.357]7Wh2nulzli2HLW6/AqLubA==[/tex], 故函数在该类区间上单调减少.

    内容

    • 0

      函数 [tex=6.857x1.357]bX3RSYB6d97x4lYmK9rf5Q==[/tex]在区间[input=type:blank,size:4][/input]内单调减少,在区间[input=type:blank,size:4][/input]内单调增加.

    • 1

      试求下列函数的单调区间及极值点[tex=4.857x1.214]y/nD9My2CEB2GNa4USLvDg==[/tex]

    • 2

      求函数 [tex=5.143x1.571]OCj21ozeJQpB0WoBh2AdZF6fxdI5bV3paTQyBfJIzzU=[/tex]的单调区间

    • 3

      求函数 [tex=5.786x1.643]wyIZoKZPebPDMsT9Vyfv3asTwexMZCnezcS7LDEujK4=[/tex]的单调区间

    • 4

      求函数[tex=6.214x1.286]7rd2QsTj5+9CXTGrU7h3v2Ucx3rapU3sXsiKZWfWM00=[/tex]的单调区间。