举一反三
- 设n为正整数,计算:(1)(-1)2n(2)(-1)2n+1
- 【单选题】Which of the following matrices does not have the same determinant of matrix B: [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -1, 0, -9,-5] A. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 0; -1, 0, -9, -5] B. [1, 3, 0, 2; -2, -5, 7, 4; 1, 0, 9, 5; -1, 0, -9, -5] C. [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -3, -5, -2, -1] D. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 1; -1, 0, -9, -5]
- 计算并输出9的阶乘。 jx=1 n=1 do while jx=jx*n enddo 9!=’+’1*2*3*4*5*6*7*8*9=’+’
- 编写程序,输出下列的数字图形。 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 1 2 3 1 2 1
- 下面程序的功能是输出以下9阶方阵。请填空。 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 4 5 4 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 # include int main( ) { int a[10][10],n,i,j,m; scanf("%d",&n); if(n%2= =0) m=n/2; else( ); for(i=0;i m=n/2+1 n–i–1 n–i–1
内容
- 0
编写程序,对于输入的正整数n,输出S=1×3×5×7×…×(2n-1)值.
- 1
(1)5 7 9 11() () ()()(2)26 23 20 17()() 8()(3)1 2 4 7 11() () 29(4)7 3 8 3 9 3()()(5)1 1 2 3 5 8()()
- 2
下列数组声明语句中,不正确的是_________。 A: Dim a(9) As Single = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} B: Dim a() = {1, 2, 3, 4, 5, 6, 10} C: Dim a( ,) As Single = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}} D: Dim a() As Single = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} E: Dim n As Integer=10Dim a(n) As Single
- 3
设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]
- 4
有六组量子数: (1) n=3,l=1,m=-1;(2) n=3,l=0,m=0;(3) n=2,l=2,m=-1;(4) n=2,l=1,m=0;(5) n=2,l=0,m=-1;(6) n=2,l=3,m=2 其中正确的是( )。 A: (1)(3)(5) B: (2)(4)(6) C: (1)(2)(4) D: (1)(2)(3)