有一平面简谐波沿Ox轴的正方向传播,已知其周期为0.5 s,振幅为1 m,波长为2 m,且在t=0时坐标原点处的质点位于负的最大位移处,则该简谐波的波动方程为( )
A: y=cos(πt-4πx+π)
B: y=cos(4πt+πx+π)
C: y=cos(4πt-πx-π)
D: y=cos(4πt-πx)
A: y=cos(πt-4πx+π)
B: y=cos(4πt+πx+π)
C: y=cos(4πt-πx-π)
D: y=cos(4πt-πx)
举一反三
- 一平面简谐波沿Ox 正方向传播,波动表达式为 y = 0.10 cos[2π(t/2 - x/4)+π/2] (SI),该波在t=0.5s 时刻的波形图是
- 有一平面简谐波沿Ox轴的正方向传播,已知其周期为0.5 s,振幅为1 m,波长为2 m,且在t=0时坐标原点处的质点位于负的最大位移处,则该简谐波的波动方程为( )
- 一振幅为A、周期为T、波长为λ平面简谐波沿x负向传播,在x=λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:() A: y.=Acos(2πt/T-2πx/λ-π) B: y=Acos(2πt/T+2πx/λ+π) C: y=Acos(2πt/T+2πx/λ-π) D: y=Acos(2πt/T-2πx/λ+π)
- 设函数$$y=y(x)$$由$$\left\{ \begin{matrix} x=a(t-\sin t), \\ y=a(1-\cos t) \\ \end{matrix} \right.$$确定,则$${y}''(x)=$$(). A: $$-\frac{1}{a(1-\cos t)}$$ B: $$-\frac{1}{a{{(1-\cos t)}^{2}}}$$ C: $$\frac{1}{a(1-\cos t)}$$ D: $$\frac{1}{a{{(1-\cos t)}^{2}}}$$
- 一振幅为A、周期为T、波长为λ平面简谐波沿X负向传播,在X=(1/2)λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:() A: y=Acos(2πt/T-2πx/λ-1/2π) B: y=Acos(2πt/T+2πx/λ+1/2π) C: y=Acos(2πt/T+2πx/λ-1/2π) D: y=Acos(2πt/T-2πx/λ+1/2π)