函数\(y = \cos (4 - 3x)\)的导数为( ).
A: \( - 3\sin \left( {4 - 3x} \right)\)
B: \(3\sin \left( {4 - 3x} \right)\)
C: \(3\sin \left( {4 + 3x} \right)\)
D: \( - 3\sin \left( {4 + 3x} \right)\)
A: \( - 3\sin \left( {4 - 3x} \right)\)
B: \(3\sin \left( {4 - 3x} \right)\)
C: \(3\sin \left( {4 + 3x} \right)\)
D: \( - 3\sin \left( {4 + 3x} \right)\)
举一反三
- 函数\(z = \ln \left( {3x + {y^4}} \right)\)的全微分为 A: \(dz = { { 3 + {y^4}} \over {3x + {y^4}}}dx + { { 3x + 4{y^3}} \over {3x + {y^4}}}dy\) B: \(dz = {3 \over {3x + {y^4}}}dx + { { 4{y^3}} \over {3x + {y^4}}}dy\) C: \(dz = {3 \over {3x + {y^4}}}dy + { { 4{y^3}} \over {3x + {y^4}}}dx\) D: \(dz = {3 \over {3x + {y^4}}}dx - { { 4{y^3}} \over {3x + {y^4}}}dy\)
- $\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
- 函数\( y = \left( {x - 4} \right)\root 3 \of { { {\left( {x + 1} \right)}^2}} \)的极大值为( )。 A: 0 B: 2 C: 3 D: 4
- \( \sin x \)的麦克劳林公式为( ). A: \( \sin x = x - { { {x^3}} \over {3!}} + { { {x^5}} \over {5!}} - \cdots + {( - 1)^n} { { {x^{2n + 1}}} \over {\left( {2n + 1} \right)!}} + o\left( { { x^{2n + 2}}} \right) \) B: \( \sin x = 1 - { { {x^2}} \over {2!}} + { { {x^4}} \over {4!}} - { { {x^6}} \over {6!}} + \cdots + {( - 1)^n} { { {x^{2n}}} \over {\left( {2n} \right)!}} + o\left( { { x^{2n + 1}}} \right) \) C: \( \sin x = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)
- 函数\( f\left( x \right) = |{x^2} - 3x + 2| \)在\( [ - 3,4] \)上的最小值_______. ______