设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,证明 [tex=0.786x1.857]HvRfdD49AA11ZLsdQA7Xxg==[/tex]也是集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价系。
举一反三
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]和[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,则[tex=1.929x1.0]4N2Gd/QaTowBXzDJM8s54g==[/tex]是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系。
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,将[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的元素按[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的等价类顺序排列,请指出此等价关系 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的关系矩阵 [tex=1.571x1.214]vGYzHX53AOjsp+qXDwbdhg==[/tex] 有何特征?
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]和[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的两个等价关系,试举例说明下面式子不一定是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系:[tex=2.214x1.143]amRoCfD8Yh3wsAyKIxYExA==[/tex]。
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]和[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的两个等价关系,试举例说明下面式子不一定是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系:[tex=1.929x1.0]4N2Gd/QaTowBXzDJM8s54g==[/tex]。
- 设 [tex=6.429x1.357]klM2zPlpUvR9h+kvfCE1fhUIUP7Sz0ZGhI/sOPx4vG4=[/tex] 是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上的等价关系, 且 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上所构成的等价类是 [tex=5.357x1.357]YUAvYM+3tTbTdgG9W2P+R2LuZ1txekHGBdI3ojQ5ctA=[/tex].求[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex].