设 [tex=6.429x1.643]cxfPMI6hpt+P8/PzfSFwX4tmiQDMuXFoALKpB+MQIKE=[/tex] 求全微分 [tex=1.071x1.0]3O/CtBGNcwXXroH3rj6XPQ==[/tex].
举一反三
- 设[tex=6.857x1.571]oN2opGVBELD+YJ8zbPlOdN/NpRlZROu2qVSvR307NMjFLX5eeomxfV4ANUQ7BzzP[/tex] , 求全微分[tex=1.071x1.0]3O/CtBGNcwXXroH3rj6XPQ==[/tex].
- 判断半径大小并说明原因:(1)[tex=1.071x1.0]ZIxpATrL2EWTpYe3CKPlpg==[/tex]与 [tex=1.357x1.0]LO7mudz7++HOXb8YDQ1UtQ==[/tex](2) [tex=1.286x1.0]nOvFdt4hpTubfX23eRvSvg==[/tex]与[tex=1.071x1.0]Kr2c9X1cZ4El5JSNMoM0/w==[/tex](3) [tex=1.214x1.0]Q1mlMfKWwfAuQJLgzt2cVQ==[/tex]与[tex=1.357x1.0]ovKrdUm5wnQSTfl9He3wzA==[/tex](4)[tex=1.143x1.0]8nY7k4VEnlDIEx7o05iMhQ==[/tex]与[tex=1.357x1.214]in11+JirBe0MeyXDnVwAww==[/tex](5)[tex=1.643x1.214]cIgqspnlK9Ra13rNdyZhHQ==[/tex]与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex](6)[tex=1.929x1.143]CtrLAecFBVyCnMYbqB02Ag==[/tex]与[tex=2.0x1.214]2cEIifUWf5oYRzhjCpTV6A==[/tex](7)[tex=2.214x1.214]OdTls2gllRl/Z1zy0+35/g==[/tex]与[tex=2.071x1.214]YDXlUgl4Yvd6QFjcd0Ns2Q==[/tex](8)[tex=2.071x1.214]QvCjZKA7OQkNYccCl0MVgQ==[/tex]与[tex=1.929x1.214]GDfkuEdqfBLP2oRgr+Wojw==[/tex]
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 设 3 阶实对称矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值为 6、3 、 3, 与特征值 6 对应的特征向量为 [tex=6.929x1.286]P7m89WiGmN+qYSkz4792P+GrblnpfD/w6lXOEvICZQ8=[/tex],求与特征值 3 对应的特征向量。
- 表3 3给出Y关于X,X的线性回归结果。[img=597x133]17b00b1eab2e326.png[/img] 检验假设:[tex=1.214x1.214]AKRJ+piA0nf7C/6/dimpFw==[/tex]和[tex=1.214x1.214]mzDCcy67Z8VvjJDKwZ/vAA==[/tex]对Y无影响,应采用何种检验,为什么