设[tex=10.714x1.5]tybLZYAJ5RzKkQLib6uqQiUMBw+bqf13JQ1LKvqcCGE=[/tex], 求[tex=2.786x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex].
举一反三
- 设[tex=11.143x1.5]tybLZYAJ5RzKkQLib6uqQtqak7mxL3UjMWouMFBwKKg=[/tex],求[tex=2.786x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex].
- 设[tex=13.857x2.714]Tnji2g3V1d+JA0VCk7EKFmktX5Np0YfK9cpuBrNPoyHiMaxtmpCjm2jpMDnHfa5xJmdEGqzEeLoCKqs/680V3RdfiwG2lLTui2TGGLAVAuw=[/tex],求[tex=2.786x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]
- 设函数 [tex=2.786x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]满足恒等式[tex=10.714x1.5]tybLZYAJ5RzKkQLib6uqQvobeE942GhM6pLpG4KdTKc=[/tex], 则[tex=4.071x1.357]wv7dtiqAMpwq3KU42Pxfvw==[/tex]的微分[tex=1.786x1.0]clGiXrE0gtl2rOqd/ILOuw==[/tex] .
- 设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.
- 设函数 [tex=12.571x2.357]OHpHlp08spOzUuoW7DEI8UQGU5oI0ymbpfLTaAsQGVreaSPi+43aPyPx6TTq0MR0BO0kwCd0ZA/DFao4/+UdUA==[/tex][br][/br]求[tex=2.786x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]的极值,并证明函数[tex=2.786x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]在点[tex=2.286x1.357]sVCzP1QNUT517zJi7AAZqw==[/tex] 处不取极值.[br][/br][br][/br]