设f(lnx)=x2-2x.则f(x)
举一反三
- 设f(x)二阶可导,y=f(lnx),则y″=() A: f″(lnx) B: f″(lnx)(1/x) C: (1/x)[f″(lnx)+f′(lnx)] D: (1/x)[f″(lnx)-f′(lnx)]
- 设f(x 2)=x 3, 则f(x)=____________。
- 设f′(lnx)=1+x,则f(x)=() A: x+e+C B: e+x/2+C C: lnx+(lnx)/2+C D: e+C+e/2
- 【单选题】设 f ( x ) 是可导函数, 则 lim Δ x → 0 f 2 ( x + △ x ) − f 2 ( x ) △ x = ()。 A. [ f ′ ( x ) ] 2 " role="presentation"> [ f ′ ( x ) ] 2 B. 2 f ′ ( x ) " role="presentation"> 2 f ′ ( x ) C. 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) x ) 2 f ( x ) f ′ ( x ) " role="presentation"> f ( x ) f ′ ( x ) D. 不存在;
- 设f’(lnx)=1+x,则f(x)=()。