• 2022-06-19
    机器学习中L1正则化和L2正则化的区别是?
  • 使用L2可以得到平滑的权值使用L1可以得到稀疏的权值

    内容

    • 0

      关于L1正则化与L2正则化以下表述正确的是()。 A: L2正则化比L1正则化产生更加稀疏的模型 B: L1正则项有利于增强模型的泛化能力 C: 加上L2正则项后,无法使用梯度下降算法迭代参数值 D: L1,L2正则项不能作用在损失函数之上

    • 1

      逻辑回归通常采用哪种正则化方式? A: Elastic Net B: L1正则化 C: L2正则化 D: Dropout正则化

    • 2

      正则化的方式有两种,分别是L1正则化和______。

    • 3

      【单选题】关于 L1、L2 正则化下列说法正确的是 A. L2 正则化能防止过拟合,提升模型的泛化能力,但 L1 做不到这点 B. L2 正则化技术又称为 Lasso Regularization C. L1 正则化得到的解更加稀疏 D. L2 正则化得到的解更加稀疏

    • 4

      关于L1正则和L2正则 下面的说法正确的是( ) A: L2范数可以防止过拟合,提升模型的泛化能力。但L1正则做不到这一点 B: L2正则化表示各个参数的平方和的开方值 C: L1范数会使权值稀疏 D: L2正则化有个名称叫“Lasso regularization”