A: (2,2)
B: (4,1)
C: (3,2)
D: (2,4)
举一反三
- 【单选题】按照顺序排列动态规划的求解步骤,正确的是( ) (1)递归定义最优值。 (2)以自底向上的方式计算出最优值,并记录相关信息。 (3)分析最优解子结构性质。 (4)构造出最优解。 A: (1),(2),(3),(4) B: (1),(3),(2),(4) C: (3),(1),(2),(4) D: (1),(2),(4),(3)
- 假设原始问题为: max z=2x 1 -x 2 +3x 3 -2x 4 s.t. x 1 +3x 2 - 2x 3 + x 4 ≤12 -2x 1 + x 2 -3x 4 ≥8 3x 1 - 4x 2 +5x 3 - x 4 = 15 x 1 ≥0, x 2 :Free, x 3 ≤0, x 4 ≥0 则对偶问题中约束条件及决策变量的符号依次为: min y=12w 1 +8w 2 +15w 3 s.t. w 1 - 2w 2 + 3w 3 ( ) 2 3w 1 + w 2 - 4w 3 ( ) -1 -2w 1 +5w 3 ≤3 w 1 - 3w 2 - w 3 ≥-2 w 1 () 0,w 2 () 0, w 3 :Free
- 设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为______. A: α1,α2,α3 B: α1+α2,α2+α3,α3+α1 C: α2,α3,α4或α1,α2,α4 D: α1+α2,α2+α3,α3+α4,α4+α1
- 如果,其中xyz≠0,那么x:y:z= A: 1:2:3 B: 2:3:4 C: 2:3:1 D: 3:2:1
- 设A={1, 2, 3},B={1, 2, 3, 4},A到B的关系R={〈x, y〉|x=y},则R为 ( ) A: {<1, 2>, <2, 3>} B: {<1, 1>, <1, 2>, <1, 3>, <1, 4>, <1, 5>} C: {<1, 1>, <2, 1>} D: {<1, 1>, <2, 2>, <3, 3 >}
内容
- 0
a = [x for x in range(4) if x % 2 ==1],语句print(a)输出为 A: [1, 2, 3] B: [0, 1, 2, 3] C: [0, 2] D: [1, 3]
- 1
已知列表 x = [1, 2, 3],那么执行语句 x.insert(1, 4) 之后,x的值为___________。 A: [4, 1, 2, 3] B: [1, 4, 2, 3] C: [1, 2, 3, 4] D: [1, 1, 2, 2]
- 2
下面程序的功能是输出以下9阶方阵。请填空。 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 4 5 4 3 2 1 1 2 3 4 4 4 3 2 1 1 2 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 # include
- 3
某max型线性规划标准型的目标系数为(1 5 2 6 0 3). 模型的单纯形矩阵经过一系列迭代,化为如下最优典式: 0 3 0 1 1 3 | 6 1 0 0 0 6 -1 | 3 0 -1 1 0 1 -1 | 1 0 -2 0 0 -4 -1 | -10则可知最优解中基变量对应的目标系数向量CB为 ( ) A: (6 1 2) B: (4 1 3) C: (1 2 6) D: (0 4 1)
- 4
某max型线性规划标准型的系数矩阵为 [ A | E ]形状(E表示单位阵),目标系数为(2 -1 3 4 2 0). 模型的单纯形矩阵经过一系列迭代,化为如下最优典式: 0 0 1 1 1 0 | 8 1 0 0 1 1 1 | 1 0 1 0 1 0 1 | 2 0 0 0 0 -3 -1 | -10则对偶模型的最优解为 ( ) A: (4 2 0) B: (4 5 1) C: (0 3 1) D: (3 2 -1)