设总体X的分布律为P(X=1)=1-θ,P(X=2)=θ,其中0
A:
B:
C:
D:
E:
F:
G:
H:
A:
B:
C:
D:
E:
F:
G:
H:
举一反三
- 设总体X的分布律为P(X=0)=θ,P(X=1)=P(X=2)=(1-θ)/2,其中0
- 中国大学MOOC: 设总体X的分布律为P(X=0)=θ, P(X=1)=P(X=2)=(1-θ)/2,其中0<θ<1为待估未知参数。设【图片】是简单随机样本。则θ的矩估计量是样本均值。
- 设随机变量X服从参数为2的泊松分布,则以下结果正确的是 A: E(X)=D(X) B: P(X=2)=P(X=1) C: P(X=0)=P(X=1) D: P(X≤1)=P(X=2) E: P(X≥2︱X≥1)=P(X≥1) F: P(X≥1)+P (X≤1)=1 G: E(X)<D(X) H: E(X)>D(X)
- 设离散型随机变量的分布律为:p{X=0}=1/3,p{X=1}=1/6,p{X=2}=1/2,则p{X<1/2}=
- 中国大学MOOC: 设总体X的分布律为P(X=0)=θ/3, P(X=1)=2θ/3, P(X=2)= P(X=3)=(1-θ)/2,0<θ<1,θ是未知参数,从总体取得样本0,0,1,1,1,2,2,2,3,3, 则以下结果正确的是