已知f0(x)=cosx-sinx,且f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1 (x)则
因为f0(x)=cosx-sinx,所以f1(x)=f′0(x)=-sinx-cosx,f2(x)=f′1(x)=-cosx+sinx,f3(x)=f′2(x)=sinx+cosx,f4(x)=f′3(x)=cosx-sinx,…,所以导函数是以4为周期的函数.所以f2012(x)=f0(x)=cosx-sinx.故答案为:cosx-sinx.
举一反三
- 【单选题】5.设f 0 (x)=sinx,f 1 (x)=f 0 ′(x),f 2 (x)=f 1 ′(x),...,f n +1 (x)=f n ′(x),n∈N,则f 2011 (x)等于() A. sinx B. -sinx C. cosx D. -cosx
- 设f(x)=xx+1,定义f1(x)=f(x),f2(x)=f1(f(x)),f3(x)=f2(f(x)),…,fn(x)=fn-1(f(x)),(n≥2,n∈N)则f100(x)=1的解为x=______.
- 设f1(x)和f2(x)为二阶常系数线性齐次微分方程y″+py′+q=0的两个特解,若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件?() A: f1(x)f′2(x)-f2(x)f′1(x)=0 B: f1(x)f′2(x)-f2(x)f′1(x)≠0 C: f1(x)f′2(x)+f2(x)f′1(x)=0 D: f1(x)f′2(x)+f2(x)f′1(x)≠0
- 设f1(x)和f2(x)为二阶常系数线性齐次微分方程y''+py'+q=0的两个特解, 若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件?() A: f1(x)*f'2(x)-f'1(x)*f2(x)=0 B: f1(x)*f'2(x)-f'1(x)*f2(x)≠0 C: f1(x)*f'2(x)+f'1(x)*f2(x)=0 D: f1(x)*f'2(x)+f'1(x)*f2(x)≠0
- 已知f(x+1)=-f(x)且f(x)=1,(-1<x<0)0,(0≤x<1),则f(3)=( ) A: -1 B: 0 C: 1 D: 1或0
内容
- 0
设函数f(x)满足f(x+Δx)-f(x)=2xf(x)Δx+ο(Δx)(Δx→0),且f(0)=2,则f(1)=____。
- 1
设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
- 2
已知f’(x)=tan2x,且f(0)=1,则f(x)等于().
- 3
设随机变量的密度函数f(x)如下:f(x)=x,0≤x<1;f(x)=2-x,1≤x<2;f(x)=0,其他.则(1)P(X≤1.5)=();(2)P(x>3)=();(3)F(2)=().
- 4
已知函数(x)f为奇函数,且当0>x时,f(x)=x2+1/2,则(-1)=f()