• 2022-06-19
    已知函数 [tex=7.5x1.5]nFJ5eriQ3JjnYeseRMPezorIFFo1tTuptiBl91cW/b8=[/tex] 证明它是一个调和函数且求出其共轭调和函数 [tex=2.929x1.357]ffp8Fn+Z/Hdd7Z8sq55+eQ==[/tex]
  •  解 [p=align:center][tex=7.214x1.5]e/DQcumE+NSlhLs9rclyaNdK8zLdJ55AebHGxqSXsYo=[/tex][p=align:center][tex=16.214x1.5]38jSpjrHrdGgyxlDSHsk7Hgk++2KA/oDpARu/Q8LuKikG4OdnPtbpzu8U+a6uYdz1qNOaKA/BZ1AgUkqBdSVKw==[/tex][p=align:center][tex=15.357x1.5]2MoyBjDzIcAf5/zewMdC2RzrXm7PJ/OdoULe3caYeqmupKSIO4GmZo9Wtp/t0DHJs7EnOkMR/lPdL1K5th4GzQET6tadoibBQghcqeUmdXk=[/tex]因为 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 是二阶连续可微的,且 [tex=10.429x1.286]VbiIF0ikRYY30p7h/v7ylCUlHUF6E46TXiQA/aa7SfnMxfUX3ZkaZiHe8YDra+4x[/tex] 所 以 [tex=7.214x1.5]nFJ5eriQ3JjnYeseRMPezgiLG7l7IK6DjmQXCSDMc58=[/tex] 在全平面调和. 设 [tex=2.786x1.357]GhcMUKWYfCD3K0BhvBKDbw==[/tex] 为 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 的共轭调和函数. [p=align:center][tex=9.357x2.643]Cm4ZKGHnFqU7XztzHymfu3TB/jjRTrG59BIQj50VCvqkBHjPBG41M82yW+k8+G6O[/tex][p=align:center][tex=11.5x5.5]Ck4j1YFlvVH5wCAykOEMiySQ7cHPw/LsqB5XlnPXj+Agz0BLfF31KnjqeUFACv0ni8ZFIrw79VCBfp0M4TIK4eBb6nf7dyThAoROq/TaObg1m8nli7/8faB1vFnObGffVqMRb8dnmugJv51+VMreAEACSRC0x9Tm1oGsrTDCNeTuKoAX7Zk8nzXdO/FxC1i9[/tex][p=align:center] [tex=17.357x1.5]48d/5povRbc+ZuD1a4ZNMekd01Qva2qtwxv/uvwYHeWxz6ODz9EoO7UvPQfbZoIxQW8/zPOOrZkHVLgvqTxn8g==[/tex]所以[p=align:center][tex=13.571x2.714]7Hn+ZqJEDc7U5w1U1tFsFcw2pZ9frKlYmUc2akGyDW4hNkV0AQ9SK8plhi8C/jY/56S9GErARyBUJZcyV8FFfeOTtW9SbY40eVUiiQu5wPo=[/tex]因此 [tex=2.857x1.357]5qODqd/qaxuX0gsrn/6whQ==[/tex] 的共轭调和函数为 [p=align:center][tex=12.214x2.5]3hd5dBw3bmUaMrSrMdSu0wnpUUETVkCdzo3dY46B2xlKQnHmjgcLdIrucHJ18RaskdkTzIlUIF1+qpw/KeXw1dySiPRRlPGPKPesqxvftC8=[/tex]其中 [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex] 为不定常数.

    内容

    • 0

      设[tex=0.5x0.786]pmD1JbahT9zMRAbBNi045A==[/tex]是[tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex]的共轭调和函数,问:在下列各对函数中,后者是否为前者的共轭调和函数:[tex=4.214x1.429]HUj6fL56FyetAOgbEDmfSereI3mBHRGeQtJkHCLtAaw=[/tex].

    • 1

      试证下列各函数为调和函数,并求出相应的解析函数[tex=4.143x1.357]LogYAzAvCq1eGBWwADRiTDEXgIiuKOaEt6GvKoBkivE=[/tex].[tex=5.714x1.214]VEsoUf4je2PNRlzpzthCydShncrGfk7D2ORDhzaPEW0=[/tex]

    • 2

      试证下列各函数为调和函数,并求出相应的解析函数[tex=4.143x1.357]LogYAzAvCq1eGBWwADRiTDEXgIiuKOaEt6GvKoBkivE=[/tex]. [tex=1.929x0.786]wSgNtKeeL9Lp26PWjTxglQ==[/tex]

    • 3

      试证下列各函数为调和函数,并求出相应的解析函数[tex=4.143x1.357]LogYAzAvCq1eGBWwADRiTDEXgIiuKOaEt6GvKoBkivE=[/tex]. [tex=2.357x1.0]JjGYng9ZYe1dDhs7Z0+1Ww==[/tex];

    • 4

      证明:函数[tex=4.0x1.429]h8L9h8J7AgNi0Vi1+nVgbQ==[/tex],[tex=4.357x2.357]vpgLV47EHIN8emToP5bea3RiO0Fo1FVZaComJ3NTHss=[/tex]都是调和函数,但[tex=4.714x1.357]QWSXe8P/RZYscrdBo9o/lQ==[/tex]不是解析函数.