y=x^2(x-1)^2(x-3)^2的拐点有几个?
举一反三
- 下述断言正确的是( )。 A: $x-1$是$(x^{2}-1)^{3}(x^{3}-1)$的$3$重因式; B: $x^{2}-1$是$(x^{2}-1)(x^{3}-1)$的单因式; C: $(x-1)^{2}$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$2$重因式; D: $x-1$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$4$重因式。
- 已知齐次方程$(x-1){{y}^{''}}-x{{y}^{'}}+y=0$的通解为$Y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}$,则方程$(x-1){{y}^{''}}-x{{y}^{'}}+y={{(x-1)}^{2}}$的通解是( ) A: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{2}}+1)$ B: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{3}}+1)$ C: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}$ D: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}+1$
- 曲线y=(x-1)2(x-3)2拐点的个数是()。 A: 0 B: 1 C: 2 D: 3
- 已知集合A={x|(x+1)(x-3)<0},B=|x||x|>2},则A∩B等于______。 A: {x|-2<x<-1} B: {x|-1<x<2} C: {x|2<x<3} D: {x|-2<x<3}
- 函数 $y=e^ x - 2^x$的导数 A: $e^ x - 2^x $ B: $e^ x - 2^{x-1} $ C: $e^ {x-1} - 2^{x-1} $ D: $e^ x - 2^x \ln 2 $