第一换元法求积分1.∫2/(1-5x)dx2.∫1/x倍的根号下(1-ln^2x)dx3.∫x倍的根号下(2-3x^2)dx
∫2/(1-5x)dx,u=1-5x,du=(-5)dx=(2)(-1/5)∫1/udu=(-2/5)ln|u|+C=(-2/5)ln|1-5x|+C∫dx/[1-(lnx)²]^(1/x)?这题别说x倍根号,就算是2倍根号也无法解出∫(2-3x²)^(1/x)dx?也是无解
举一反三
- 函数 $y=\ln \sqrt{x}$的微分为 A: $\frac{1}{2}\ln x dx $ B: $\frac{1}{2}dx$ C: $\frac{1}{2x}dx$ D: $\ln x dx$
- 下列四个积分中,()是广义积分。 A: \( \int_0^2 { { 1 \over { { {(3 - x)}^2}}}dx} \) B: \( \int_0^6 { { {(x - 4)}^{ - {2 \over 3}}}dx} \) C: \( \int_0^1 { { 1 \over {1 + {x^2}}}dx} \) D: \( \int_1^2 { { 1 \over { { x^2}}}dx} \)
- 求积分∫1/根号下(2-3x^2)dx
- 【单选题】二元 溶液 , T, P 一定时 ,Gibbs—Duhem 方程的正确形式是 (). A. X 1 dlnγ 1 /dX 1 + X 2 dlnγ 2 /dX 2 = 0 B. X 1 dlnγ 1 /dX 1 + X 2 dlnγ 2 /dX 1 = 0 C. X 1 dlnγ 1 /dX 2 + X 2 dlnγ 2 /dX 1 = 0 D. X 1 dlnγ 1 /dX 1 – X 2 dlnγ 2 /dX 1 = 0
- 下列积分中()不是广义积分。 A: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) B: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) C: \( \int_0^1 { { 1 \over { { x^2}}}dx} \) D: \( \int_0^1 { { 1 \over { { x^2} - 4}}dx} \)
内容
- 0
下列广义积分发散的是( )。 A: \( \int_0^{ + \infty } { { e^{ - x}}dx} \) B: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) C: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) D: \( \int_0^1 { { 1 \over {\sqrt {1 - x} }}dx} \)
- 1
急设x=2t^(2)-1,y=根号(1+t^2).求dy/dx和d^2y/dx^2
- 2
求不定积分:根号下(1+a^2*sin^2(x))dx
- 3
Solve $\int_0^{1}x \ln^2{x}dx=$ :<br/>______
- 4
若\( \int {f(x)dx = {x^2} + C} \),则\( \int {xf(1 - {x^2})dx = } \)( ) A: \( 2{(1 - {x^2})^2} + C \) B: \( - {1 \over 2}{(1 - {x^2})^2} + C \) C: \( {1 \over 2}{(1 - {x^2})^2} + C \) D: \( - 2{(1 - {x^2})^2} + C \)