确定常数a,b使lim(√(2x^2+4x-1)-ax-b)=0其中x->∞
举一反三
- 试确定常数a,b,使lim{(3次根号下√(1-x^3))-ax-b)=0(x趋于无穷)
- 下列极限计算正确的是( ). A: \(\lim \limits_{x \to 0} { { \left| x \right|} \over x} = 1\) B: \(\lim \limits_{x \to {0^ + }} { { \left| x \right|} \over x} = 1\) C: \(\lim \limits_{x \to 0} {(1 - {1 \over {2x}})^{2x}} = {e^{ - 1}}\) D: \(\lim \limits_{x \to \infty } {(1 - {1 \over {2x}})^{2x}} = e\)
- lim(x/2)^(x/x-2).x趋向于2!第二题:lim(e^(x)-1/x).x趋向于0
- lim(sinmx)^3/x^2(其中m为常数)的值等于(x→0)
- lim(x->0)[1-x^2-e^(-x^2)]/[x(sinx)^3]