举一反三
- 函数\( f\left( x \right) = {x^3} \)与\( g\left( x \right) = {x^2} + 1 \)在区间\( \left[ {1,2} \right] \)上不满足柯西中值定理。( )
- 函数\( f\left( x \right) = {x^2} \)在区间\( \left[ {1,2} \right] \)上满足拉格朗日中值定理的数值\( \xi \)= ________。______
- 函数\( f\left( x \right) = 2{x^2} - x - 3 \)在区间\( \left[ { - 1,1.5} \right] \)上满足罗尔定理的点是 ________. ______
- 函数\( f\left( x \right) = x\sqrt {3 - x} \)在区间\( \left[ {0,3} \right] \)上满足罗尔定理的数值\( \xi \)= ______ .
- 多项式\( f\left( x \right) = {x^3} - 3x + a \)在\( \left[ {0,1} \right] \)上有两个零点( )
内容
- 0
若\({y_1}\left( x \right), {y_2}\left( x \right)\)都是\(y' + P\left( x \right)y = Q\left( x \right)\)的特解,且 \({y_1}\left( x \right), {y_2}\left( x \right)\) 线性无关,则通解可表为\(y\left( x \right) = {y_1}\left( x \right) + C\left[ { { y_1}\left( x \right) - {y_2}\left( x \right)} \right]\)。
- 1
函数\( f\left( x \right) = {x^3} \)在区间\( \left[ {1,2} \right] \)上满足拉格朗日中值定理的数值\( \xi \)=( ). A: \( { { \sqrt {21} } \over 3} \) B: \( { { \sqrt {21} } \over 7} \) C: \( {7 \over 3} \) D: \( {3 \over 7} \)
- 2
下列函数中在区间[-1,1]上满足罗尔定理的是( ). A: $y = x$ B: $y = \left| x \right|$ C: $y = {x^2}$ D: $y = {x^{ - 2}}$
- 3
已知函数\( f(x) \)在区间\( \left[ {a,b} \right] \)上连续,则由\( y = f(x),\;x = a,\;x = b,\;x \)轴围成的平面图形面积为( )。 A: \( \int_a^b {f(x)dx} \) B: \( \left| {\int_a^b {f(x)dx} } \right| \) C: \( \int_a^b {\left| {f(x)} \right|dx} \) D: \( f'(\xi )(b - a) \)
- 4
函数\( f\left( x \right) = |{x^2} - 3x + 2| \)在\( [ - 3,4] \)上的最小值_______. ______