• 2022-06-16
    证明双原子 [tex=3.714x1.214]exk57zctQ36ifxdx3sLR3Q==[/tex] 和 [tex=3.714x1.214]v6T1kE1Sao4xdlr1U49SCw==[/tex]。
  • 解:[tex=7.071x1.5]XE6hRc57Dt+7HHf7zLzkkrBhQyeWw7zY2baUMvgfeGU90wxsAnbxKdVOUTTUecoF[/tex][tex=10.786x1.643]8u/n+3sKLT/ZfvAot89On7uTu6p3nemZebDGhhqcz/voWq5GDzY9aR+8khY98yTCcJ83PDMHZhcBwJvI/zYDaw==[/tex][tex=17.286x1.5]A/1u8mSmd2BMZf+vMcXGCT6lDlMfPBwhcxYF4ZX3QSVGY0JjcPEIWgLa8wVUpG858Gr++QEaxEhZ1FC85WgBJw==[/tex][tex=19.5x1.571]MLL3iZ2aBCx2pPiw4uBqf8+ptKlvvu8swAg2fcGAikI4RaSWKt0Xe+WbrsFx92dbEq+ZE3EwVgmA/kd8yYwI5lFQsn8sbRTh26cPtPL+3ILPVBbmUNpte/guYTTKIh0caXmvc2OlyNcowBJ+i6BsJ5Vub8nJgsgsdtTyg2iqfxk=[/tex][tex=3.071x1.0]J9prW5th8wg1tXkfk/imBg==[/tex][tex=10.929x1.5]QuNFKQh+nGcpcXeDxATGFaSMayyGfxTPrT+90Ou2R80xKGkfePds0bBmwBPSGcyS[/tex][tex=21.286x1.5]1E/Lww+Tcv/cm/htkWi+9neoWHt10OBMUCWNmyHz308E8sDUGR1ik2NT+MaRdUdChbr4uFmPV9GxnHlZxQxF28ora8pChjs1+X4LcNqYMF8=[/tex][tex=32.214x1.571]HKNQBsYC7scNxFUcegE4LuBOkyKwUZ/Ol8+8cudKZiFhZWn/urqXBCOiRvuTvftbh1mmffKQQGAZ9up6omZhpp5YFmVIrSM7BEc0ILZqen9ZisOHu0woqMdYLPmKsvlKuRckYNjt6J1N0mRNBId4dwKtkkBX6R5jbcp7JbrO9h0=[/tex][tex=18.357x1.357]N+LW5HkG5/YoCWElgAfa0FakXzOB1jFCp+cjvzl/1bXWmO2hTlUtyKehG3dmRcIhKF1nbmSHLaSDWO0ij3wVBw==[/tex][tex=11.214x1.571]7Lj9abrr9SDcFlYpK7hGq3brWx/rM9LRpyCeQp9trF2LAkrvzA+jbJwHRdmfKIwuxNmpnfnEgEPswEkZrTO2YQ==[/tex][tex=12.571x1.357]qJ1WCwSRi8QSOQox8Ars5Meu2xTiWFGhFbaR/+8roYFKn3vG/pKXtZ2+RmDVjIfO[/tex]

    举一反三

    内容

    • 0

      设[tex=3.214x1.071]yz4+T68Ozn0R4OGVT67m9A==[/tex],[tex=3.714x1.214]tHQOqL+GafLqS6Z9T8ajQg==[/tex],证明存在[tex=4.357x1.357]8RKkFq3VSakwEC4oKbM3pColT0fY3eo72BkSMHLgbGUmTx8n/RgsvhThQyqHX6QU[/tex],使得[tex=12.571x1.5]W7568qkr+n8PDvPqvFmVHrEWS5pkhD0n8J2f4RYmEk9elcRXL8Y57MwlwIGcWpDkXfjSiAr05H3F9NshwT84ufQ+TpK39vs/kgGwZT+3lEQ=[/tex].

    • 1

      已知金属[tex=1.214x1.0]Q1mlMfKWwfAuQJLgzt2cVQ==[/tex]为A1型结构,原子间接触距离为[tex=3.714x1.214]8AXJ69GT998b+NmrGBJY6g==[/tex].试计算:(1) [tex=1.214x1.0]Q1mlMfKWwfAuQJLgzt2cVQ==[/tex]的密度及[tex=1.214x1.0]Q1mlMfKWwfAuQJLgzt2cVQ==[/tex]的立方晶胞参数;(2) 画出([tex=7.357x1.357]VY9uxuJlzFTB9fIPvTL1FJYwN4SW5u3xAK7QslqD4Ts=[/tex]面上原子的排布方式.

    • 2

      [tex=2.214x1.0]Z8GWW72u+MH/mjafnp+83A==[/tex]丙酮酸经过丙酮酸脱氢酶系和柠檬酸循环产生[tex=4.0x1.214]EPDWVFNjIR8daNoozaWRDg==[/tex],生成的[tex=3.214x1.0]1AqDCKqjaAug6buHS5Z0tQ==[/tex]、[tex=3.429x1.214]HYAn2+I9AZQLWcA3ajoPaw==[/tex]和[tex=2.143x1.0]qQANfGnLx7pE5mcaEibuNg==[/tex](或[tex=2.071x1.0]YGdeb/NAM7yg+XY6SY16Fg==[/tex])的摩尔比是(  )。 未知类型:{'options': ['3:2:0', '4:2:1', '4:1:1', '3:1:1', '2: 2:2'], 'type': 102}

    • 3

      设[tex=3.714x1.214]YpDAgk79jDOLM2xzMz+SDg==[/tex]为群,[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 为[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的非空子集. 证明:[tex=3.786x1.214]m9JzN03D8qaY4XDaEzymPw==[/tex] 为 [tex=3.714x1.214]YpDAgk79jDOLM2xzMz+SDg==[/tex]的子群当且仅当对任意元素[tex=2.786x1.214]2nrLjaJUguA9sJeYaKIdHA==[/tex]有[tex=4.214x1.286]0yMdLmPSE2csqahglHNOvsJA7UwPvO+YNxGWu0ZE4uk=[/tex]

    • 4

      设 [tex=3.714x1.214]DHtnfSoh6bzU7RVzArKzTN9lLnnXrxk5tvdejbqeTm8=[/tex] 为正定矩阵. 证明存在上三角矩阵 [tex=0.714x1.286]BMKsEVFNvpiLV0UsqDFXCw==[/tex],  使 [tex=3.357x1.143]rK4pUhWuWjhAMTQxOkHiv/2TdJ0xpszTe6O8Fo+WGEI=[/tex]