已知y1(x)和y2(x)是方程y"+p(x)y=0的两个不同的特解,则方程的通解为( )
A: y=Cy1(x)
B: y=Cy2(x)
C: y=C1y1(x)+C2y2(x)
D: y=C[y1(x)—y2(x)]
A: y=Cy1(x)
B: y=Cy2(x)
C: y=C1y1(x)+C2y2(x)
D: y=C[y1(x)—y2(x)]
举一反三
- 已知y1(x)与y2(x)是方程y″+P(x)y′+Q(x)y=0的两个线性无关的特解,Y1(x)和Y2(x)分别是是方程y″+P(x)y′+Q(x)y=R1(x)和y″+P(x)y′+Q(x)y=R2(x)的特解。那么方程y″+P(x)y′+Q(x)y=R1(x)+R2(x)的通解应是:()
- 【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 下面程序段中正确的是( )。 A: If x<0 Then y=0 If x<1 Then y=1 If x<2 Then y=2 If x>=2 Then y=3 B: If x>=2 Then y=3 If x>1 Then y=2 If x>=0Then y=1 If x>0 Then y=0 C: If x<0 Then y=0 Else If>=0Then y=1 Else y=3 End If D: If x>=2 Then y=3 Else If>=1 Then y=2 Else y=0 End If
- 设(X,Y)的联合分布律如下表所示,则以下结果错误的是 [img=385x148]1802d3f4c0617e4.jpg[/img] A: P(Y=1|X=1)=P(Y=1|X=2) B: P(Y<1)<P(Y>1) C: P(Y≤1)<P(Y≥1) D: P(X=2)=1.5P(X=1) E: P(Y=0)=P(Y=1) F: P(X=1︱Y=1)=P(X=2|Y=1) G: P(X=1︱Y=0)<P(X=2|Y=0) H: P(X=1︱Y=2)+P(X=2|Y=2)=1 I: P(Y≥0)=1