用等价无穷小量替代法计算下列极限:[tex=6.5x2.143]MqOfsQLAB/zeVSdv1WggGP/8ImYsCrL4mENpKvyIKvAANv7N4A82GTQ/ZUGrFuoMBNkbGNQKzWFF1Vpbsl2QDw==[/tex].
[tex=29.429x2.786]UKxg58luiAXk+Hh1FYCd5UhgQQ8jfuItwDkJD04Pr/TfN4L+jm1qZTj8OBOv64nsQqhBrrDUcQ8JtFt6779ltMyv6zCmge8Sumts2DB74mJ0i9SPtJZIe+PNjPp7B1X5GfQaAv+bmtFHTqjZn+Tu3Myy5fdX0KxYQCXtZ7ZtoGt50hMDurCyibqQy/iNxKEFwB+R5+iz3sphDsDAnY5P9KxjZ9WVNfShUohWRfyCOXJcYW7RbuHzjXTQT+kj1DTUf3iGRjyHsnw/h6XArw8qzFKwxOB1xQpVBD+FGl+ij9w5LkQBnzD1fEwq1eU5l9GO[/tex].
举一反三
- 求下列极限:[tex=5.429x2.0]MqOfsQLAB/zeVSdv1WggGP/8ImYsCrL4mENpKvyIKvB9TZzh6ucaJAfEBB6BZ4EdWdZIJuZQrmr7oOjoekLQKg==[/tex].
- 求极限[tex=11.5x2.071]MqOfsQLAB/zeVSdv1WggGP/8ImYsCrL4mENpKvyIKvAx8XFKjm1J9oN3ar+FcMXewK7jnIN8AqkFKuuAW13TFJf1v+04PVz25QtUmyDrRL4=[/tex]。
- 求极限: [tex=7.071x2.214]MqOfsQLAB/zeVSdv1WggGP/8ImYsCrL4mENpKvyIKvDIVd+T8LGLCoDzl+DK77Tcq7/GOls5QuN/gGHzbZWbvM+7sVXeQOT0KVJM7Gh2zhc=[/tex].
- 求极限[tex=7.143x1.786]MqOfsQLAB/zeVSdv1WggGP/8ImYsCrL4mENpKvyIKvCYD8oyop4RkyNXuFg8/HncrNwU+/95eC3sMoUdvsKPIw==[/tex]。
- 求 [tex=7.143x2.0]MqOfsQLAB/zeVSdv1WggGP/8ImYsCrL4mENpKvyIKvBH0B07hVzW00rwaEL5H/rbyjxFVbzX5FU9so2Yo0JNmA==[/tex] 的极限.
内容
- 0
判断下列无穷小量是等价无穷小、同阶无穷小、还是高阶无穷小?[tex=4.071x1.357]Ytv1F3VCRp1CmV2Z7hoO3A==[/tex]与[tex=4.0x1.357]Ygec97y5ehoG5Y96pK9UkmTSQd/iqD68zW2rjwUf7DE=[/tex]
- 1
计算:[tex=7.071x2.214]MqOfsQLAB/zeVSdv1WggGP/8ImYsCrL4mENpKvyIKvDIVd+T8LGLCoDzl+DK77Tcq7/GOls5QuN/gGHzbZWbvM+7sVXeQOT0KVJM7Gh2zhc=[/tex]
- 2
判断下列无穷小量是等价无穷小、同阶无穷小、还是高阶无穷小?[tex=8.286x1.571]sX8d+twXyglG56PaRqTA1ASTfldg5A/SHzGFsRtSdY4=[/tex] 与 [tex=5.286x2.357]LPNgIfSpSvzTpeCN4Iyxyii5O2irz5ET/ZX8j6h/wHimhHq1ZhuZTLQvuLWkisj2[/tex]
- 3
极限等价无穷小为什么1/N(N+1)会等价于1/n^2
- 4
判断下列哪些是无穷小量,哪些是无穷大量。(1)lnx(x→1); (2)(x→1);(3)2x-1(x→0); (4)1/x(x→∞).