• 2022-06-19
    求下列微分方程满足初值条件的特解:[tex=9.357x1.429]wf1ObAhP0Jo+z1+AE2AUzOKdvf1A87spI0ZQVlQiuX/uPaQII/5d0UxKRszHGdsdqu5nCNLlaflFuKV+1l65iw==[/tex].[br][/br]
  • 将方程化为[tex=6.357x2.357]ohBl146uR3Cr+jaEwABkC+SiK04r7SjFEJyh84ockO8Ilzu69id7nffZSu7BaVR8[/tex], 由公式得[tex=31.429x5.929]qeiYnKXLEhyhuGRg8yLtr+pWIgbnHHYJ/BmBEmlES84yeBgRF+yU+IBaoNRqoVbwB3t2vmEE4EWgQ4H1ByJP5emdGi+8Yc3I7TjWylmDXy3n1izLEve6qPloJAkBe8jM93GGtUMCIeb61O9Ga/66wUtUv4BRTyyHlxzqJxYDMXCF4OilguhXnGSzmQvzNlbqSN1Vim4v5mPlJtEBZ51elWh7xCFFg8vucC16kyjlk90bpf+qDRcO82GA3aXn2b2yAtoKrh0buXGANBprKfcdevpc6oiicpowoVpSZ5xtaWxCqsDnUgBvNklJ7j6EcBihJUYs3rPzhPVvy9U5mygiuvTV15D0INwhJS9TaILS0RT73Dz3jWrr1ixDK7oVtcj12SoRsB4jUbq5XUm3ZRY7LKx9efjGBEJ6upA3qYA2aUK0x4zbGe4kpEz+qRVF5lUBzYoz/vK+yZSzu0dP2t5Zpvz6JjXYeVylcKGj0Vw36wgOXpK3vjEZzbMN0qou4IzbLD0tKm683hFx3EcaoctyveBpNgnFL08Pq0pWETe2/0FQzridLjLavKcLGTT9eXD9LTORh6n5l9YwWaMBKVTx5jK/wQxJAe98Sc1Ki9twuocymseMnGFg5siC0kLiLRQIcmgnH+fCtjjcJji6TIK8UQ==[/tex]

    内容

    • 0

      int x=3,y,z;<br/>y=-x++;<br/>z=y+8/++x;<br/>Console.WriteLine{{0},{1},{2}",x,y,z);<br/>此程序的输出结果是____。 A: 5,-3,-2 B: 4,-3,-1 C: 4,-4,-2 D: 5,-4,-2

    • 1

      下列表达式的值为True的是( ) A: 1 and<br/>5==0 B: 2!=5 or<br/>0 C: 3&gt;2&gt;2 D: 1 or<br/>True

    • 2

      【单选题】Which of the following matrices does not have the same determinant of matrix B: [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -1, 0, -9,-5] A. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 0; -1, 0, -9, -5] B. [1, 3, 0, 2; -2, -5, 7, 4; 1, 0, 9, 5; -1, 0, -9, -5] C. [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -3, -5, -2, -1] D. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 1; -1, 0, -9, -5]

    • 3

      下列Matlab代码,能求解微分方程 y'(t) = 2*t , y(0) = 1的是( ) A: tspan = [0 5];<br> y0 = 0;<br> [t,y] = ode45(@(t,y) 2*t, tspan, y0); B: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*t, tspan, y0); C: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*y, tspan, y0); D: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*t*y, tspan, y0);

    • 4

      方程\( {x^5} + x - 1 = 0 \)的正根个数为( ) A: 0 B: 1 C: 2 D: 3