• 2022-06-19
    求下列立体的体积由[tex=10.214x1.214]pMoRWGkjVQRM6iA06pscqkWl5xKPhUVRFjTUDpYTdXVttbCqVi3Il09GCsTFbjrT[/tex]所围成的立体
  • 如图 由  [tex=2.357x1.0]/qCY1riP1us6y5Us5CjF4Q==[/tex] 和  [tex=4.429x1.214]fKVNS6WF5s7b6bAFT5X3cw==[/tex] 知交线为[tex=5.286x1.214]Hlo0n+1agC2jjMI86mME3Q==[/tex] 在 [tex=1.857x1.214]nAEmrV1xNU+s/WvPmQ9wpw==[/tex]平面上投影为 [tex=4.0x2.429]L4cmT6Nbx/RqFC+w5a9ZkVZfr9yd0tMQ6QOGXITmvDs=[/tex]  , 所以 [tex=24.143x3.214]vnOKqtAZB7gRKLIvQe0qhTIb42Agfh6cVAkNFWPKNbLd16bzPw2dNvV9umM7ZpV5nk6ELMthQY4CSl11bH6sxAVPaKGWogHN8XxhLUDO88Z9BxygwLTFC7xmWvMLjTJ5e6h49tGdnUbC910GjgH5QVHEy1Zv5PPZHsR5coH+0ThUERjvEatMHGbppRVl0hOIQ1TbxctJzi9xbre0DQDSKUdYogWIvMKjDh2YISsAQVdO/RezKNgz2S+U3L3eKEb2RZQzBOD/NNMZJk4BzkgOcA==[/tex]而[tex=10.0x2.929]uOIEd5z4mI/djBdkQi7n1iDIEzoO0p2kfefNJncdWdmhJ7vkQa86XYge2TgGB1dPdp1ae4vz5KKEmzYSTYFlVTz1NjFIZ/ksnc2gJQckl2b945VT2dLEcGx6oPqQxHDh[/tex][tex=17.643x3.0]EHKlziPdj6gySGowreQ7JNJD9HyMM49KHRQvYhQX3KL6ptOkhGE/yMG/mvhk/VGvZbjgsnzHesY3RoHy7SD8qRhE0N6Zt9DbBj3aChMdWm5/ixCyN50p+OV9Kl8/DUgSfLlbmYKbKi3j7m9A80W+xRkoAOTCTbsgua3Yym52KSFYx6niW7wxmo8kBdlWg+JegVIr01Gnaob0Vhlk9I8YTw==[/tex][tex=18.286x2.857]sMlfO0XnTTKWW7heC4Cze86h9HVuuAGdbjLC472zy0iO9tcYkEJZLXgjdFrHPkVXdH/x1oRqRo9eZ8Wip5OUOe8dPB9HArxl/kKDdnZmOrOOM0hhGl0nVYTTzA+RlT5V[/tex][tex=20.643x3.0]MZIBZuv0ot+bLB7AlFRgiSUbjhc+JoX3E0SHrOFwMMtq82N2AtSHZAWQ2sn3090CNcbsPVNerv92pZtgbYCKxJ7nUyNFqc3Q5rsUsjXFRUft/lGDPpJCdWHjJLovzuh5yrQvpwTeAXEG7LWcAj8YDz5UK8aNSu9sakKfHP0z8/Y=[/tex][tex=11.643x3.071]uOIEd5z4mI/djBdkQi7n1iDIEzoO0p2kfefNJncdWdlAnBjE2ITJdevzZ+oge3s0Y6BA6eQhuI8FJn9ZCbzAPcwcxVZxFe9Jy1R4HIjppF/TZmVe6X1ACiE02KXiPoDoRSfEAvODDDNbPuAlj0jBUQ==[/tex][tex=11.714x3.071]EHKlziPdj6gySGowreQ7JNJD9HyMM49KHRQvYhQX3KK47M+opWPpc6RN3XCegT6geeiBWHQupmRUcViXUVXcSjD5lJKK6YBu/ZmdhqOlb94=[/tex][tex=18.071x2.857]HoEpQH+nBiOOVO1iYUKrJei7mObiPp6y/Qv6F5abiIon6zzMFHbUa2JNa23zvJssPMEcjGy1JWddszFRMZpriM6NVivEzrGBBYbzRn6gqYiwca2ivl+GhG18HTtLDE9MYtD44Mpys2A+2DEHNLow6g==[/tex][tex=26.143x2.929]BfYII7psoxvGiTEWoyqKtTDJ1nkSMPxMiZS2Ui6RXTzJWp0dY3AqdJDn/ScOTItUIUDVqU07j/+f1SToo1Jl4B/qnYIAcTaenDynQ8o9H1HHc18GjSqj4VX2uHv+fixfaiWK4PyTDTe8YhSO4aGW9E5Zmpqz+WSQk0LohzZnXPJffm2qUlSOBaOsVKDo8crU[/tex][tex=18.786x2.857]+bh32TABF/0PR9E2P7zhWOgjYHSWV3GGvZbv3IjMZ9V7HUdHuDMEXtUwKnwf6ykrqIOTep6YM9ngsCHKLDJZBv7CdWwadrfnTYkCQvw1rI0SBnUalWhApSgcsHrIgCosJSjF8GWbU8JYkoI4cVFXOA==[/tex][tex=18.714x2.929]+bh32TABF/0PR9E2P7zhWO/gJkgZIYwgDK+5X8stcoZWNiNgIdfW6W6KASRb3qURWpvLw/J+TGVqVhDnKPGU17S4HSrtILokVm/3VwXzEvvqsMnBZafa9FT041MIQrsP1SV+fHfV3gk0rXohD1SNVA==[/tex][tex=16.286x2.357]+bh32TABF/0PR9E2P7zhWFcsGQbxoecr6I1NmdKt3MDUs17OBLVsG0EslRUeV06b/PCjYooldYQiAzFzkUXkpA==[/tex]从而[tex=16.5x2.357]qAS0uJifddThgXoFc+yh4SrnVb6sLegozNKy/MOnMv0TRgXEy2whEoU3Mzja5uqOJnDaXMN0azoLbzOMKk644hkXOcGzwXbDbJcNUdd6Ivs=[/tex][img=501x187]178ca7ee573adb0.png[/img]

    内容

    • 0

      求由曲面[tex=7.643x1.286]ngOnoml9Zpzj98sovIfF05vqvdnIoWQ6TNfZOXdsqLY=[/tex]及[tex=5.429x1.286]d3/KYr/OXYrbP/7hP3rWhIRmBHxRtoaYuWzR+tr3ZiI=[/tex]所围成的立体的体积。

    • 1

      求由曲面[tex=5.214x1.429]pEK/Gde3Dx4sSYuP6Tgf+/gJnxB00GTrGBxwsktTJVU=[/tex] 与平面[tex=2.357x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex]所围成的立体的体积.

    • 2

      求由圆 [tex=7.143x1.5]5n3RcXxeilFw7Maei4VkeLy7D4MQ5ohtRW6beH4Ed3o=[/tex] 所围成的图形绕 [tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex] 轴旋转一周所得立体体积.

    • 3

      求曲面[tex=7.071x1.286]HbjZ1rODsOcsf7KpwkxObJ9dXfDpSBW5po2BTBOkOGQ=[/tex]与[tex=1.857x1.286]j9TayWzddHzM0PQ/gL6C3Q==[/tex]面所围成的立体体积.

    • 4

      求球面[tex=6.071x1.429]4FMDVPLuD57GDhXGjCa6CO8pA5WesA07tlDMii+/87o=[/tex]与柱面[tex=7.714x1.5]cPxYPf859FLVQOHIfOu5JjZgW4w8c68QoxnG54SzCIc=[/tex]所围成的立体体积.