• 2022-06-19
    试定义二维拉普拉斯方程边值问题的格林函数,并导出类似于[tex=12.0x3.357]V8jwz5wfc3dWXNx7QxbaHSh0aUAVmT9ZvzAwEJ++DX1a9oGK+J0m4AhTS2BDZIjC8Obc9ayp86gXO/eiH/jnSTWPn82bbXyV7Bfk3hYAZUWK11iu83alDV+Gk/pLirI8[/tex]的平面上狄利克雷问题解的表达式.
  • 和三位情形一样,调和函数的积分表达式不能直接用于求解拉普拉斯方程的边值问题,因为该式的右端积分忠既含有[tex=0.571x1.286]PTQwXI08cZXml6Nm1F/Zlw==[/tex]又含有[tex=1.357x2.071]V9fVXReHUrcmKJSTnoNlS81Z5m1loMzxRpkmcYRmUszoWzlznFyUhmq+eEwK/tB0[/tex],要想用它表示狄利克雷问题的解,就要设法消去[tex=1.357x2.071]V9fVXReHUrcmKJSTnoNlS81Z5m1loMzxRpkmcYRmUszoWzlznFyUhmq+eEwK/tB0[/tex],为此任取一个在[tex=0.714x1.286]1YkIdjxXLHdjdjLEO+eusQ==[/tex]内的调和函数[tex=0.5x1.286]h43hk9rvfl6MMCCLibYZ7g==[/tex],且设[tex=0.5x1.286]h43hk9rvfl6MMCCLibYZ7g==[/tex]在[tex=0.786x1.286]9+gTS8Ky0PsLZPMUFb/k8Li2Qv/1a6YZx60lCiQGjcI=[/tex]上是一次连续可微的,由第二格林公式得[tex=10.571x2.786]pW4hVl1Ny1EkqhcBqb3suz3+SrVNUarxSWoRcxP6BV8vXB8ZjwILx0cByNstAjlMOBw52Ayc24F8al+c4lNzpMB2sfpYbhW03vJO8KV0wyiuJk4UsiuPdYsGoMmWbjzw[/tex]这里的[tex=0.571x1.286]PTQwXI08cZXml6Nm1F/Zlw==[/tex]是调和函数. 将两式相减,得[tex=27.357x2.786]THVy1LsFKljElYJhelLkGAd09BHw+T4yg/rEyYBOiHIfUeYrazR2wmdUAwvJjL8dCc3TNvHjcFvXKaJh8BTdn/bb0gvJGmSHeknHZD3QbBFgQdjjsPo8SfzlO/nIyQvno4fW74JVQnY9qGhr34uQi2hpQqxhASXjo5FOQWbS5/EMfPiTjCBZpvr9cyNoq6w1ykEq/RYWliXLfKMOLvLCW1GVVCPh7ETA12QAN8wxvkSgnS0B9D4HsxhMu6kmMppHHKXAib+BAWKCeAOl/K86ybiLW4G9SFbF02QT0eSYk/AZ2/q0lhTKR2dIiB/5WdDrItW9gtRIwZFa0P7WeQ+v8A==[/tex]取[tex=0.5x0.786]GWrvJtODhYOBa2bpkSPSFQ==[/tex]满足[tex=6.857x2.429]daFYUcvSgTPiXg1RpMrZGo2IfWDIaNEqSTmwL0rRaP+HAfoFQznX8PTFjn3O4Gkb42SLF/m6KkxioL5CkjYQtQBJklFa6Rd7KI1S3x5GtEnYgkaWFMRGOOo6HLYL3pdB[/tex]则上式右端积分中含[tex=1.357x2.071]V9fVXReHUrcmKJSTnoNlS81Z5m1loMzxRpkmcYRmUszoWzlznFyUhmq+eEwK/tB0[/tex]这一项就消去了,即[tex=15.786x2.357]X2TVVaXtAn2o0Kxzw65SWd3VcsHNwLKW/pPDayK6RZj9E4wNOQCYx4vqM1Ymdv+/cTbyhFu/6VKqrlEIpVwZ7fe+Ir/fmpgyIRB+zK5IuTEO5AJ24e0y5i0uSqaXkj3Q1TLE/3rboTyV0tW1mIpmjp9OhjUnmIPIRpg11gPgML4=[/tex]令[tex=10.643x2.214]uIH7awJITgL51co657yMj9IO4MS89UoqmcEyT1TqhkWAyqu2ambmH8Ena3oS+VIPhkz4Fj7OY1NJDTampJHdPN1/QYNIwkCbOAPCxi/3HCk=[/tex]这里的函数[tex=4.286x1.286]UlJuHUnXcDpAf/9FJw8AMQ==[/tex]就是二维拉普拉斯的格林函数,利用格林函数可以把二维狄利克雷问题[tex=10.286x3.714]1/0/5bh78hsVDVEgaQ9Ae28CU8OddKT0EPEw9uXCUBOPyxN6b7valOCxPgWedF25xwW7XdU2qLZ8pmKeqVV3Rm7rgY/bsL2s4EId/RzXm5S/4iVc+SmW1i/G7jQ/MEqTf6BTmTM4Iyk+rVlbuLmBBWROaLdSi3O46TT/fmbrAYI=[/tex]的解表示为[tex=9.5x2.286]X2TVVaXtAn2o0Kxzw65SWd3VcsHNwLKW/pPDayK6RZg8lEFEm98sjRbF4Y6OAk+36RKaEyO5eeqq9pulU8mWU5fgN46AxE6YlybDErSB52Oh8B9Il3ceZetXAxeQ3Ylc[/tex]其中[tex=1.357x1.286]N6D6nWNQhKj/8q9BK8zsxA==[/tex]是[tex=0.714x1.286]1YkIdjxXLHdjdjLEO+eusQ==[/tex]内任一点.

    内容

    • 0

      当执行下面的语句定义一维数组a后,此数组的所有元素为 ( ) inta[10]; A.a[1],a[2],a[3],a[4],a[5],a[6],a[8],a[9],a[10],a[10] B.a[0],a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8],a[9] C.a[0],a[2],a[3],a[4],a[5],a[6],a[7],a[8],a[9],a[10] D.a[1],a[2],a [3],a[4],a [5],a [9],a [7],a [8],a [9],a [10],a [11]

    • 1

      >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']

    • 2

      说明S盒变换的原理,并计算当输入为110101时的S1盒输出。 [br][/br] n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 S1 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

    • 3

      【单选题】myarray1=np.arange(15) myarray2=myarray1.reshape(5,3) print( myarray1) print(myarray2) 输出值是? A. [ 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15] [[ 0  1  2] [ 3  4  5] [ 6  7  8] [ 9 10 11] [12 13 14]] B. [ 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15] [[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12] [13 14 15]] C. [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14] [[ 0  1  2] [ 3  4  5] [ 6  7  8] [ 9 10 11] [12 13 14]] D. [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14] [[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12] [13 14 15]]

    • 4

      下面是图的拓扑排序的是?(多选)[img src="https://i1.chinesemooc.org/course/formula/201610/eb69927aaf8baae83211ee3fadf836e7.png"] A: 2 8 0 7 1 3 5 6 4 9 10 11 12 B: 2 8 7 0 6 9 11 12 10 1 3 5 4 C: 8 2 7 3 0 6 1 5 4 9 10 11 12 D: 8 2 7 0 6 9 10 11 12 1 3 5 4