已知标准正态分布随机变量的特征函数为g(t)=exp{-t2/2},随机变量X服从正态分布N(μ,σ2),则X的特征函数gX(t)为
A: exp{itμ-σ2t2/2}
B: exp{itμ+σ2t2/2}
C: exp{2itμ-σ2t2/2}
D: exp{2itμ+σ2t2/2}
A: exp{itμ-σ2t2/2}
B: exp{itμ+σ2t2/2}
C: exp{2itμ-σ2t2/2}
D: exp{2itμ+σ2t2/2}
举一反三
- 求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)
- 一阶常微分方程[img=152x26]1802e4d6075ee4f.png[/img]的通解为 A: sin(2*t)/5-cos(2*t)/10+C*exp(-4*t) B: sin(2*t)/7+cos(2*t)/5-C*exp(-3*t) C: sin(2*t)/7-C*cos(2*t)/10+C*exp(-2*t) D: sin(2*t)/7-cos(2*t)/7+C*exp(-5*t)
- 用Matlab求解常微分方程初值问题[img=191x61]1802e4db6ff00c5.png[/img],输出结果是: A: 2*exp(t)+4*t*exp(-t)+1 B: 2*exp(-t)+4*t*exp(-t)-1 C: 2*exp(-t)+4*t*exp(-t)+1 D: 2*exp(t)+4*t*exp(-t)-1
- 设随机变量X服从标准正态分布N(0,1), 则E(exp(X))= A: 1 B: exp(1/2) C: exp(-1/2) D: 0
- 求微分方程[img=101x35]17da5f15503f795.png[/img] 的通解,实验命令为(). A: dsolve(Dy+2*x*y=x*exp(-x^2))ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 B: dsolve('Dy+2*x*y=x*exp(-x^2)','x')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 C: dsolve('Dy+2*x*y=x*exp(-x^2)')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2