• 2022-06-07
    选择系数s是指在选择作用下降低的适合度f,二者的关系是()。
    A: s=1-f
    B: s=1+f
    C: f=1+s
    D: f-s=1
    E: s-f=1
  • C

    内容

    • 0

      设$L[f(t)]=F(s)$,则下列公式中,不正确的是 A: $f(t)=\frac{(-1)^n}{t^n}L^{-1}[F^{(n)}(s)]$ B: $f'(t)=L^{-1}[sF(s)]-f(0)\delta (t)$ C: $\int_0^t f(t)dt=L^{-1}[\frac{F(s)}{s}]$ D: $e^{at}f(t)=L^{-1}[F(s+a)]$

    • 1

      ‌下列函数能够求n的阶乘n!的是​ A: f = lambda n: n! B: def f(n): s=1 for i in range(n): s = s * i return s C: def f(n): s=1 for i in range(n,0,-1): s = s * i return s D: def f(n): if n == 1: return 1 else: return f(n-1)*n

    • 2

      输入正整数n,计算s = 1/1! + 1/2! + 1/3! + ……+ 1/n!的值。 #include int main { int j, k, n; double f, s; scanf("%d", &n); s= (1) ; for (k=1; k<=n; k++) { f= (2) ; for(j=1; (3) ; j++) f= (4) ; s=s+1/f; } printf("sum=%f ", s); return 0; }

    • 3

      已知函数f(t)对应的拉普拉斯变换F(s),Re&#91;s&#93;>s0。函数f(at)对应的拉普拉斯变换 A: f(at)对应的拉普拉斯变换为 (1/a)F(s/a) B: 若a C: f(at)对应的拉普拉斯变换为 (1/a)F(s/a), Re[s]>as0 D: 若a>0,则f(at)对应的拉普拉斯变换为 (1/a)F(s/a), Re[s]>as0。

    • 4

      f(t)=ε(t),则F(s)=1/s 。 A: 正确 B: 错误