• 2022-06-07
    利用定理6.1和定理6.2,求下列函数的Laplace逆变换:[tex=5.071x2.429]7yAspt9kTXByZXMBZNkl2vqUorX5v8t9LkvTctPAkIg=[/tex].
  • 设[tex=10.929x1.5]LNbyQ+Ww6c8t9z5SUQeWku18HMoJ8n6oTRnB+cPJoY4=[/tex]有3个单零点[tex=14.357x2.643]fwO6MSSnjbiIlmuPjfpgffdHGPAxvVJIat7HBdH3LZfkuXIdFDsL80KP0aW/f6faunp0VunnNqA2I4mQRsXNAZbT5sQm4u0h7oGnG74GmGIx7vwgD9/58kcw5RT/Pn5D+EHsZeD7ZeoSalbbU8sV1A==[/tex],则由Heaviside第一展开定理得[tex=22.714x6.5]a0s3MH7cLIdmiBRR0YN067aeo/eQpFsw4RMELa5DY0S7YlzIZ6IY/ejV+Fy6HqBnBpPpFd/CdZkbY+JbWcteiPoZ4llHs8e2lVx4834cZa98NKKFp7zX+Yk6gTHwTg+b7W+9zdt0kfneVVnBzmEgtVDoPWlL77yJrizVGp9hb340j5mJikLKLw7Svx4VLhEiFgHOwyxSDVQkf9dTsxByltjKASy5vhrHPM7ZfBNkkpDyYozZR39a0rACAd5rdLfuP6DVi78fcLFhFpcLtV2UM60pfLJijrphjMo+uMTjWOXX2yE+bMpHjU7qaqKn7Lz32YkGzFn/CiyvzNEZeUvyjImqWecxpmhJ492uB2CjtwyNpgPFXJxXa+pC8aoEZSsG/Oah7pAvj/P3WdSqjAB6AeD7rpsVr/VdAu/2RPf2WQjh0uYdjV2ErN7Yw6EPX1IVsjLPP3gh3eH4EIu1eh191O1zjf3TWeXDmrKQ8rQUtyHI0adXkFgM1hKKxOM3ODasSNmwKvl59QK4fyH8XrkwAtKeSuh6iZQ/ENUY6xQSHZNUOIIEOJdRMaH4bsK2G43JYhlAviHkMVmDaGPUReDwyfTrY7gyelwsYa2aFi3uIIE=[/tex]

    内容

    • 0

      试利用Laplace变换的性质求[tex=3.429x1.357]l20hKCBUe8BooY3Hf/eDGg==[/tex]的Laplace变换。

    • 1

      试求下列函数的双边Laplace变换及收敛域。[tex=3.5x1.357]zkQWfxEbo2TtJDNs1fS+vQ==[/tex]

    • 2

      试求下列函数的双边Laplace变换及收敛域。[tex=4.571x1.357]IXGhGQEgD6E6B1vDQcoGTmmoqE1mjb9kWTHYEtMd4go=[/tex]

    • 3

      利用 Laplace 展开定理或递推法计算下列行列式.[tex=12.286x7.5]Uyz5s0rmQIddjb5Jc2T/YebUmNGpgIWB8atJNZRxY1brqEAAyB62miP8eB9+YiOl1XHfQhhxFsQiyvqBbS3AJNDG9rXYIJHHLSw69gWL2ekJpjwFvrgWdr8YC33cKZ7s5KVBQdWssfZKUeQHcY08d9MMjr8JYuLJiELv/wLD1t8HhOX9qBUtGt3ANSHlnzjPMZCI4EIHip0njTSAer7R25P8NzeY/VqtV/5dnkVz4Y4=[/tex]

    • 4

      【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=