举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是一个对称矩阵, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有一个 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 阶主子式 [tex=1.571x1.357]Q/GokBo2RLLYLkjQdcJvqg==[/tex] 不等于零且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 所有包含 [tex=1.571x1.357]Q/GokBo2RLLYLkjQdcJvqg==[/tex] 的 [tex=1.786x1.143]0I+mivUTc61+gHYMZ4P6UA==[/tex]及 [tex=1.786x1.143]UaQxuhUKI4GVtPgR92aBsw==[/tex] 阶加边主子式都等于零, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的秩等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]
- 求证: 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的秩等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的充要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 存在一个 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 阶子式 [tex=1.429x1.357]LyfDtN6+R6bUYlGsfelPgA==[/tex] 不等于零, 而 [tex=1.429x1.357]LyfDtN6+R6bUYlGsfelPgA==[/tex]的所有 [tex=1.786x1.143]0I+mivUTc61+gHYMZ4P6UA==[/tex] 阶加边子式全等于零.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是一个反对称矩阵, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有一个 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 阶主子式 [tex=1.571x1.357]Q/GokBo2RLLYLkjQdcJvqg==[/tex] 不等于零且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 所有包含 [tex=1.571x1.357]Q/GokBo2RLLYLkjQdcJvqg==[/tex] 的 [tex=1.786x1.143]UaQxuhUKI4GVtPgR92aBsw==[/tex] 阶加边主子式都等于零, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的秩等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]
- 设[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩为[tex=0.5x0.786]51EIYuoXo3UTYashe96uEQ==[/tex]([tex=2.286x1.071]+mGiw43aotHzksWzBM6TfQ==[/tex],且[tex=2.714x0.929]8dt+4PPvAOCVvPeMl8PRJQ==[/tex],[tex=2.429x0.929]YMro24lVMpm8220OqKI0Ww==[/tex]),问[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]中是否一定存在不为零的[tex=1.786x1.143]Gtn30bh5VSqTO3TeAkacaw==[/tex]阶子式? 是否存在为零的[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]阶子式? 是否存在不为零的[tex=1.786x1.143]0I+mivUTc61+gHYMZ4P6UA==[/tex]阶子式? 为什么?
- 在秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的矩阵中,有没有等于零的[tex=1.786x1.143]KCmuihAs9Q9baVpCuYn0cQ==[/tex]阶子式?有没有等于零的[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]阶子式?有没有不等于零的[tex=1.786x1.143]0I+mivUTc61+gHYMZ4P6UA==[/tex]阶子式?
内容
- 0
设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=2.714x1.214]rPRBSosCEth94R4jBBpQCQ==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为( )。 未知类型:{'options': ['0', '1', '[tex=1.286x1.143]AcbURnSUksMF5caOSz5CtQ==[/tex]', '0或1'], 'type': 102}
- 1
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 阶实矩阵, 则矩阵 [tex=1.786x1.143]HXjkm+iJsYI9mmrX7isP0w==[/tex] 的任一主子式都非负.
- 2
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是域 [tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex] 上秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵.1) 证明 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有非零的 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 级主子式.2 ) 又若 [tex=2.286x1.0]nrDn1K3wfGPS5vJ5c5JkwTpRSi1lFeR+ayR8NA65ddw=[/tex],则有 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的任何两个非零主子式同号.
- 3
设 4 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足条件[tex=13.429x1.571]pNXwj7dxoGbcprO3/HATinbMcrt8sC5y1uPd3TRH6ssCiv8WtIXVXb9cSHXuJP20[/tex], 其中[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为 4 阶单位矩阵,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值。
- 4
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的第 [tex=3.857x1.214]DjCiGMHqs7i43AtzYtScEqSDa5Lj7huZCbFWNAtAodY=[/tex] 行和第 [tex=3.857x1.214]DjCiGMHqs7i43AtzYtScEqSDa5Lj7huZCbFWNAtAodY=[/tex] 列交点上 的元素组成的子式称为 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的一个主子式. 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是对称矩阵或反对称矩阵且秩等 于 [tex=0.5x0.786]51EIYuoXo3UTYashe96uEQ==[/tex], 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 必有一个 [tex=0.5x0.786]51EIYuoXo3UTYashe96uEQ==[/tex] 阶主子式不等于零.