中国大学MOOC: 由前提(p∧q)→r,┐r可以正确推出结论:┐p
举一反三
- ( )不是正确的推理形式。 A: 前提: p∨q, pÛr, ~q∨s 结论: s∨ B: 前提: ~p∧q, p∨~r, r∨s, sÞu 结论: u C: 前提: pÞ(qÞr) 结论: (pÞq)Þ(pÞr) D: 前提: (p∧q)Þr, ~r∨s, ~s, p 结论: q
- ( )不是正确的推理形式。 A: 前提: ~p∧q, p∨~r, r∨s, sÞu结论: u B: 前提: p∨q, pÛr, ~q∨s结论: s∨r C: 前提: pÞ(qÞr)结论: (pÞq)Þ(pÞr) D: 前提: (p∧q)Þr, ~r∨s, ~s, p结论: q
- 构造下列推理的证明。 (1)前提:¬P∨Q, ¬(Q∧R),R;结论:¬P。 (2)前提:(P→Q)→(Q→R),R→P;结论:Q→P。 (3)前提:P→(Q→R), ¬S∨P;结论:Q→(S→R)。 (4)前提:¬P∧¬Q;结论:¬(P∧Q)。 (5)前提:P→¬Q,R∨S,S→¬Q;结论:¬P
- 由前提(p∧q)→r,┐r可以得到有效结论:┐p
- 以“~p”和“p←(q←r)”为前提,可必然推出结论()。 A: p←r B: ~p∨r C: q→p D: r E: ~(q←r)